COMUNE di COLLE UMBERTO

PROVINCIA di TREVISO

REGIONE del VENETO

AMPLIAMENTO AI SENSI DELLA L.R. 50/2012 DEL CENTRO COMMERCIALE DI CUI ALL'U.M.I. 1 INDIVIDUATA DALLA SCHEDA NORMA N. 6 DEL P.R.G.

SINTESI DELLO STUDIO SULLA VIABILITA' DEL 19.12.2013 NOTA CON FINI ILLUSTRATIVI

Proponente:

TONON S.p.A.

Via Menarè, 25 Colle Umberto (TV)

Autore dello studio:

dott.ing. Gianni Dal Moro

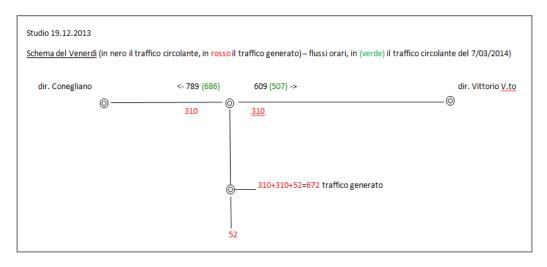
via A. Borin n. 48/a 31100 TREVISO tel. 0422-22202 fax. 0422-22202

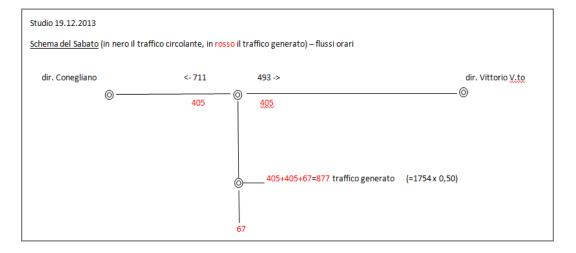
e-mail: gdalmoro@tin.it

Treviso - Colle Umberto, 08/04/2014

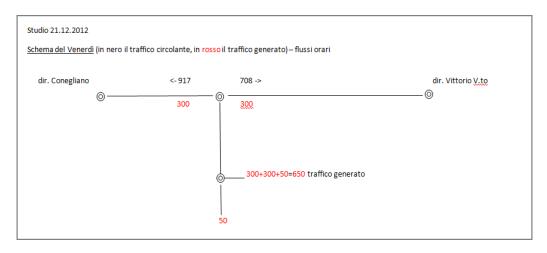
Sommario

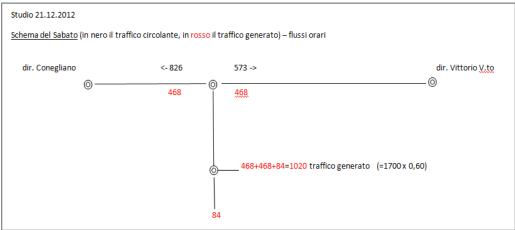
1. Premessa
2. Traffico circolante e traffico generato
2.1 Il traffico circolante
2.2 Il traffico generato6
3. Verifiche dei livelli di servizio per le intersezioni9
3.1 Rotatoria all'intersezione tra SS 51 e via Calate (configurazione con traffico
generato conseguente all'ampliamento)9
3.2 Rotatoria all'intersezione tra SS 51 e via Calate (traffico generato della
configurazione "screening 2013")
3.3 Rotatoria all'intersezione tra la SS 51, via Mattei, via Podgora e via Baracca
(configurazione con traffico generato conseguente all'ampliamento)13
3.4 Rotatoria all'intersezione tra la SS 51, via Mattei, via Podgora e via Baracca (traffico
generato della configurazione "screening 2013")
3.5 Incrocio del Menarè tra SS 51, via Roma (SP 42) e via Pastin Santin
(configurazione con traffico generato conseguente all'ampliamento)16
3.6 Incrocio del Menarè tra SS 51, via Roma (SP 42) e via Pastin Santin (s.d.v. autorizzata)
4. Conclusioni

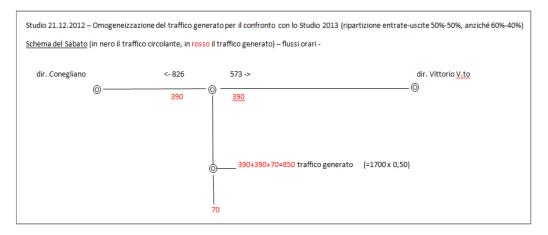

1. Premessa


Questa Relazione, su incarico dell'impresa Tonon S.p.A., persegue unicamente lo scopo di illustrare in forma sintetica alcuni dei risultati già contenuti nelle precedenti relazioni, enucleando i dati di *traffico circolante* e *traffico generato* contenuti nella corrente versione dello studio viabilistico (del dicembre 2013) e in quella del dicembre 2012, rispettivamente associate alla nuova configurazione commerciale - sottoposta alla procedura di screening - e a quella precedentemente autorizzata.

2. Traffico circolante e traffico generato


La presente richiesta di ampliamento, alla quale si riferiscono lo studio viabilistico del dicembre 2013 e le relative integrazioni, presenta la seguente modalità di connessione tra il centro commerciale e la S.S. 51, nella quale si sono evidenziati i volumi del traffico circolante e generato presi in considerazione, nelle giornate di venerdì e di sabato all'ora di punta (coppia di tabelle seguenti).


Si è pure evidenziato, nella prima tabella, il traffico circolante effettivamente misurato con il rilievo effettuato venerdì 7 marzo 2014.



Nello studio viabilistico del dicembre 2012, corredato alla documentazione depositata per la precedente procedura di screening conclusasi nel 2013, vi erano i seguenti volumi di traffico circolante e generato, per il venerdì e per il sabato.

Dato che in quella versione dello studio, per il sabato, vi era una differente ripartizione delle entrate e delle uscite, è necessaria una omogeneizzazione del traffico generato, se si intende fare il confronto con lo studio del dicembre 2013, dove gli apporti sono ripartiti ugualmente in ingresso e in uscita.

2.1 Il traffico circolante

Nelle precedenti osservazioni del 18/03/2014 è stata dimostrata la validità delle ipotesi sul *traffico circolante* assunte nello studio del 2013, mediante il raffronto con i rilievi del traffico eseguiti nei giorni 7 e 8 marzo 2014.

Nell'ultima versione dello studio viabilistico, in corrispondenza della sezione all'incrocio tra la S.S. 51 e Via Calate, era stato prospettato un numero di veicoli equivalenti nell'ora di punta del venerdì (stimata dalle 17.35 alle 18.35), pari a 609 in direzione Vittorio Veneto e 789 in direzione Conegliano.

Ricordiamo che tali proiezioni sono state ottenute applicando una riduzione del 14% ai flussi precedentemente stimati nel 2002, in seguito all'analisi economica condotta all'interno di quello studio.

Nello scorso mese di marzo, tra le giornate di venerdì 7 e sabato 8 sono stati eseguiti, sulla SS 51, i rilievi del traffico secondo le procedure della DGR n. 1047/2013.

Poiché nello studio del 19/12/2013 l'ora di punta pomeridiana del venerdì era stata riferita all'intervallo tra le 17.35 e le 18.35, per poter svolgere un confronto omogeneo tra il traffico attualmente circolante e quello allora ipotizzato si è reso necessario individuare, nei rilievi, il numero di veicoli equivalenti entro un intervallo orario quanto più vicino alla fascia 17.35 - 18.35

Pertanto, all'interno dei rilievi condotti presso la postazione radar sulla S.S. 51 in direzione Conegliano, è stata individuata la fascia oraria 17.30 - 18.30 come la più vicina all'ora di punta dello studio precedente; sono stati estrapolati i veicoli equivalenti misurati nell'ora tra le 17.30 e le 18.30 e si è determinata la corrispondente somma, pari a 686.

La stessa procedura è stata applicata anche ai rilievi della postazione sulla S.S. 51 in direzione Vittorio Veneto, in modo da determinare il numero di veicoli equivalenti tra le 17.30 e le 18.30, pari a 507.

Pertanto i rilievi hanno restituito, per la fascia oraria dalle 17.30 alle 18.30 (quasi corrispondente all'ora di punta dello studio 2013), un numero di veicoli equivalenti pari a 686 in direzione di Conegliano e a 507 in direzione di Vittorio Veneto.

Il confronto si può riassumere nella seguente tabella:

	direzione Vittorio Veneto	direzione Conegliano
proiezioni 19/12/2013 (ora di punta 17.35-18.35)	609	789
rilievi radar 07/03/2014 (ora di punta 17.30-18.30)	507	686

Si osserva che i rilievi presentano dei flussi orari minori di quelli ipotizzati nel 2013.

Lo stesso confronto è stato compiuto anche rispetto al traffico associato all'ora di punta attuale. Nei rilevi si è osservato che, in direzione Conegliano, l'ora di punta pomeridiana corrisponde alla fascia oraria 16.30 - 17.30, entro la quale si misura un flusso orario di 766 veicoli equivalenti.

In direzione Vittorio Veneto l'ora di punta pomeridiana corrisponde alla fascia oraria 17.30 - 18.30, di fatto corrispondente a quella prospettata nello studio del 2013, cui è associato un flusso orario di 507 veicoli equivalenti.

Il confronto tra il traffico attuale e quello stimato nello studio del 2013, in termini di flussi per l'ora di punta pomeridiana, è riassunto dalla seguente tabella:

		· ·
proiezioni 19/12/2013 (ora di punta 17.35-18.35)	609	789
rilievi radar 07/03/2014 (ora di punta 16.30-17.30)		766
rilievi radar 07/03/2014 (ora di punta 17.30-18.30)	507	

direzione Vittorio Veneto

direzione Conegliano

Nel caso del traffico in direzione Conegliano, lo sfasamento temporale di circa un'ora non è da ritenersi di particolare importanza, dato che la letteratura in materia e le osservazioni sul campo individuano, dal punto di vista statistico, l'ora di punta pomeridiana entro intervalli orari centrati tra le 17.00 e le 18.00.

Nel caso della direzione Vittorio Veneto, invece, si ha la perfetta coincidenza con l'ora di punta stimata.

Pure questo secondo confronto porta a flussi orari attuali minori di quelli stimati nel 2013, o quasi coincidenti (in direzione Conegliano il flusso misurato nell'ora di punta pomeridiana corrisponde al 97% di quello stimato nel 2013).

2.2 Il traffico generato

L'evoluzione delle motivazioni, per il *traffico generato* dalla struttura commerciale nel corso delle sue versioni progettuali tra il 2002 e il 2013, è descritta all'interno del paragrafo n. 3 "*Il traffico generato*" contenuto nelle integrazioni del 25/02/2014, che qui si riassume.

Gli studi di impatto viabilistico hanno preso avvio nel 2002, all'epoca cioè della vendita del complesso immobiliare da parte della Provincia di Treviso, allorché l'iniziativa progettuale prevedeva la realizzazione di 18.000 m² di superficie di vendita.

Al fine di una prima valutazione dell'impatto della struttura commerciale sul sistema economico ed infrastrutturale, era stata avanzata una stima del numero di scontrini medi annui previsti, dalla quale si poteva stimare i flussi veicolari indotti.

L'esigenza di delineare degli scenari futuri sulla viabilità implicava il ricorso a criteri di tipo predittivo e allora si ritenne opportuno basarsi sui dati previsti di affluenza, espressi in termini di "scontrini" (circa 2.000.000 all'anno), calcolati sulla base di esperienze analoghe.

Le conseguenti analisi, compiute nello studio viabilistico allora predisposto dall'ing. Honsell di Trieste (2002), portarono a stimare in 750 veicoli/h in ingresso ed altrettanti in uscita il traffico generato nei periodi di maggior carico; tale analisi non presentava ancora una caratterizzazione distinta dei flussi indotti, per le ore di punta del venerdì e del sabato.

Nel 2005, all'epoca dell'approvazione del PIRUEA, parve evidente l'impossibilità di attivare i 18.000 m² di superficie di vendita, perlomeno in tempi brevi, a causa della ridotta disponibilità nei contingenti regionali allora previsti dalla L.R. 15/2004, senza per questo perdere la prospettiva di poter incrementare tale superficie in seguito.

Per questo motivo, agli inizi del 2010, allorché fu stipulato l'Accordo di programma ex art. 32 della L.R. n. 35/2001, il dato di 750 veicoli/h fu ridotto a 650 veicoli/h per il venerdì (ora di punta), valido sia in ingresso che in uscita; il flusso complessivo, nell'ora di punta, era quindi di 1300 veicoli/h.

Per il sabato, invece, si ritenne di proiettare sull'ora di punta la previsione di 1.020 veicoli/h in ingresso e 680 veicoli/h in uscita, corrispondenti al 60% e al 40% di un flusso complessivo di 1.700 veicoli/h.

Con tale ipotesi si era voluto, da una parte, maggiorare il dato complessivo del venerdì, in modo da tener conto della maggiore attrattività della struttura commerciale nella giornata prefestiva

del sabato; dall'altra considerare prudenzialmente uno sbilanciamento tra gli ingressi e le uscite, rispettivamente nella misura del 60% e del 40%.

Con questo si voleva tener conto di un fattore di rotazione della sosta più lungo, quindi di una permanenza maggiore nel Centro Commerciale, con conseguente intensificazione del flusso sul nodo di ingresso.

È da tener presente che alla fine del 2009 la crisi finanziaria del 2008 non si era ancora trasformata in vera e propria crisi economica o, quanto meno, in questo senso non era stata ancora percepita, né ne era stato intuito il lungo orizzonte temporale.

Lo scenario descritto nel 2010 teneva presente un assetto correlato ad una superficie di vendita di 6.188 m², ma "coltivava" la prospettiva di un incremento, anche alla luce delle tendenze evolutive della legislazione.

Gli ultimi studi sulla viabilità (2012 e 2013) hanno scontato l'appalesamento della crisi economica, in generale, e di quella settoriale (commercio della grande distribuzione); in particolare lo studio del 2013, correlato all'ampliamento della superficie di vendita di 1.237 m² nel settore non alimentare, mediante il quale la struttura è stata portata agli attuali 7.425 m².

In quella valutazione il flusso massimo in ingresso, nell'ora di punta del sabato, è stato ridotto da 1.020 veicoli/h a 877 veicoli/h; per il flusso in uscita è stato stimato un uguale valore di 877 veicoli/h, senza applicare alcun sbilanciamento tra ingressi e uscite.

Per l'ora di punta del venerdì la somma di afflussi e deflussi orari è passata da 1300 unità a 1344, suddivise equamente tra ingressi e uscite, quindi rispettivamente 672 e 672 veicoli/h.

Quest'ultima cifra oraria di traffico, integrando ingressi ed uscite, è seppur di poco (il 3,2%) aumentata, per tener conto dell'incremento di superficie di vendita, con una correlazione attenuativa dipendente dagli effetti della crisi economica.

Si osservi bene che la quota di incremento di superficie non interessa il settore alimentare e che, nel suo complesso, il rapporto tra traffico attratto e superficie complessiva di vendita non è lineare, in quanto il maggior fattore di attrazione è costituito dall'ipermercato, le cui dimensioni non subiscono significative variazioni.

Rispetto alle analisi del 2010 e del 2012, pure è variato il modello assunto nella ripartizione tra ingressi e uscite; all'epoca le proiezioni erano più ottimistiche e l'assunzione di uno scompenso fra ingressi e uscite nell'ora di punta, quotandole rispettivamente il 60% ed il 40% del totale, costituiva un'ipotesi di stress del sistema oltremodo prudenziale, il quale trovava sostegno nel dimensionamento del parcheggio interno (attualmente con 1.090 posti per la clientela).

Il parcheggio, in altri termini, poteva agevolmente far fronte al 60% dei 1.700 veicoli di portata oraria del sabato (1.700x0,60=1.020), anche nell'ipotesi più impegnativa di un fattore di rotazione pari a 60 minuti, contro i 45 minuti generalmente registrati.

In tempi di maggior afflusso generale alle grandi strutture di vendita, negli anni cioè in cui il PIL segnava una fase espansiva ed i consumi erano in crescita, le dimensioni del parcheggio costituivano un fattore di influenza sulla capacità di attrazione, in applicazione del principio secondo cui i clienti smettono di affluire alla struttura allorché incontrano ingenti difficoltà a trovare parcheggio.

Tale effetto distorsivo, in questi ultimi anni, non è più presente ed è ragionevole predire che nemmeno in futuro ricomparirà, se non altro per il fatto che l'offerta della grande distribuzione è molto più ampia che negli anni '90.

Non vi sono più ragioni, pertanto, per scostarsi dalla equiripartizione tra ingressi e uscite proposta nello studio del 2013, per cui ci si riconduce alla stima degli 877 veicoli/h per il sabato e ai 672 veicoli/h per il venerdì.

L'operazione sopra descritta è corretta e ciò non solo in quanto tiene conto di un'evidente evoluzione del fenomeno, ma anche perché il dato di 877 veicoli/h è congruente con l'applicazione di altri criteri di dimensionamento.

Fra questi vogliamo innanzitutto richiamare quello contenuto nello "Studio per la costruzione di un abaco di criteri di valutazione delle quantità di traffico generate attratte dalle strutture per

la grande distribuzione", pubblicato dal Dipartimento Commercio e Mercati della Regione Veneto nel febbraio del 2000, con riferimento all'articolo 16 della L.R. n. 37 del 09/08/1999.

In esso ricaviamo che per i Centri Commerciali altamente attrattivi (coefficiente di attrattività = 100) il rapporto tra veicoli attratti nell'ora di punta e la superficie di vendita è pari a 0,13. Nel nostro caso si ottiene un traffico generato, nell'ora di punta, di 965 veicoli/h, appena del 9% discostato da quello assunto di 877.

Va detto, peraltro, che il suddetto abaco è stato elaborato in una fase economica di crescita, sulla base di analisi compiute negli anni '90 e, pertanto, si impongono fattori correttivi in decremento, la cui giustificazione è legata al caso particolare (il 9,1% è la percentuale di perdita di PIL reale tra il terzo trimestre 2007 ed il terzo trimestre 2013, come dedotto dalle recenti indagini statistiche dell' Istat e di Confindustria).

L'indagine sull'affluenza alla struttura è stata completata con riferimento ai punti vendita della rete Bennet aventi taglia, bacino d'utenza e caratteristiche territoriali molto simili a quello di Colle Umberto.

È noto come l'insegna del centro commerciale - in particolare dell'ipermercato - possa condizionare le caratteristiche della struttura e la sua capacità di attrazione, pur tenendo presente che notevole influenza esercitano le caratteristiche del bacino d'utenza e i punti vendita già presenti.

A questo proposito va osservato che, dal 2002 al 2013, si è registrato l'insediamento di almeno due strutture in grado di competere con quella in esame, rispettivamente nei Comuni confinanti di Vittorio Veneto e di Conegliano.

Analizzando i dati di afflusso ad un punto vendita Bennet con analoghe caratteristiche territoriali e demografiche del bacino d'utenza e avente superficie dell'ipermercato simile a quella del centro di Colle Umberto, per quanto riguarda il periodo dal 2011 al 2013, si ricava un quantitativo annuale di scontrini pari a 575.000 ed un afflusso settimanale massimo di circa 14.500 utenti (a dicembre in prossimità delle festività natalizie).

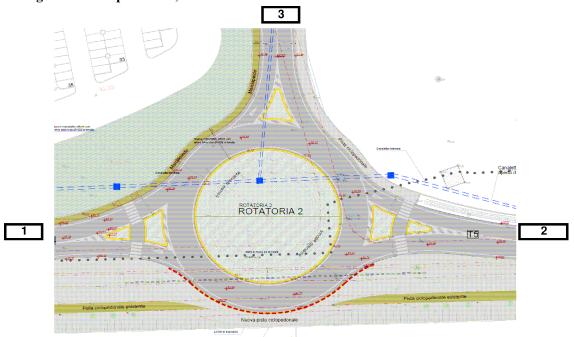
Il quantitativo di scontrini è notevolmente inferiore al valore di 2.000.000, pur riferito a tutto il centro commerciale, preso in considerazione negli studi viabilistici dal 2002 al 2005, a dimostrazione che quanto si va ora a realizzare è ben al di sotto degli scenari tracciati all'epoca della trasformazione urbanistica dell'area e all'individuazione delle opere sulla viabilità di afferenza.

Il valore settimanale di 14.500 utenti è un valore massimo, al quale sta sotto l'intero andamento del flusso annuale, comprendendo pure il periodo prenatalizio, notoriamente caratterizzato da volumi nettamente superiori a quelli che si registrano nei fine settimana più frequentati del resto dell'anno, che possono essere stimati in 12.000 unità.

Sulla scorta di dati statistici attendibili e considerando l'apertura domenicale, sono state stimate l'affluenza massima giornaliera al punto vendita di confronto, pari a 3480 utenti, e l'affluenza massima oraria (misurata il sabato), corrispondente a 626 utenti.

Assumendo che su 100 utenti che accedono al Centro Commerciale, ciascuno con un proprio veicolo, 8 non accedono all'ipermercato, ma ai punti vendita in galleria, e che sui rimanenti 92 che accedono all'ipermercato, 7 di questi non effettuino alcun acquisto, ed escono quindi senza scontrino, si ricava il fattore correttivo, pari a 1,176, per il quale va moltiplicato il numero degli scontrini per ottenere il numero dei veicoli corrispondenti.

In questo caso si ha $626 \times 1{,}176 = 736$, numero inferiore agli 877 stimati come flusso di veicoli nell'ora di punta.


Ecco, quindi, dimostrato come il dato di stima assunto, pari a 877 veicoli/ora, sia fortemente corroborato da analisi che tengono conto sia dei fattori macroeconomici, che di quelli specifici dell'afflusso al centro commerciale.

3. Verifiche dei livelli di servizio per le intersezioni

Di seguito si descrivono gli esiti delle verifiche per le tre intersezioni principali; per ciascuna di queste è stato considerato sia il traffico generato dalla superficie di vendita sottoposta a screening (indicato nello studio viabilistico del 2013), sia il traffico associato alla superficie di vendita già autorizzata (nello studio in versione 2012).

Si presentano esclusivamente le tabelle riassuntive dei livelli di servizio.

3.1 Rotatoria all'intersezione tra SS 51 e via Calate (configurazione con traffico generato conseguente all'ampliamento)

Schema planimetrico

LoS - Highway Capacity Manual 2000								
Livello di servizio intersezione non semaforizzata	Ritardo	o medio (s.	veicolo)					
A	0≤	d	≤ 10					
В	10 <	d	≤ 15					
c	15 <	d	≤ 25					
D	25 <	d	≤ 35					
E	35 <	d	≤ 50					
F	d (s)	>	50					

Livelli di servizio secondo HCM 2000

Traffico indotto il venerdì:

310 veicoli/h in ingresso 310 veicoli/h in uscita

510 veleciti in diseita

Traffico indotto il sabato:

405 veicoli/h in ingresso 405 veicoli/h in uscita

Intersezione a rotatoria tra SS51 e Via Calate Livelli di servizio con centro commerciale attivo										
<u>ramo n.</u>	<u>via/direzione</u> Parametri dei rami									
1	Vittorio	Veneto	per il ver	nerdì			per il sab	ato		
2	Coneg	iano								
3	Via Ca	late	1	2	3		1	2	3	
Metodo ana	litico SE	TRA per la determina	zione de	lla capac	ità e del	grado di	saturazio	one		
capacità del ramo	veic/h	C=	1301	1285	1039		1228	1209	1097	
grado di saturazione del ramo		X=	0,85	0,72	0,60		0,91	0,74	0,74	
	Verifica dei livelli di servizio con il metodo HCM 2000									
Flusso entrante	veic/h	Qe=	1099	919	620		1116	898	810	
Periodo di analisi (T=0,25 per un periodo di 15 min)	h	T=	0.25	0.25	0.25		0.25	0.25	0,25	
Ritardo medio secondo HCM	s/veic	d=	16	9	8		23	11	12	
Massimo numero di veicoli in coda (95%)	veic	Q95=	11	7	4		15	7	7	
Lunghezza media di veicoli in coda	m	Lcoda,med=	28	15	9		42	16	16	
Lunghezza massima della coda (95%)	m	Lcoda,95=	68	40	25		88	44	42	
Livello di servizio secondo HCM 2000		LoS(HCM)=	С	Α	Α		С	В	В	

Il ramo che presenta il maggiore carico è il n. 1 associato agli ingressi in rotatoria dalla direzione Vittorio Veneto, sia per il venerdì che per il sabato.

Per il ramo 3 si tenga presente che il sabato si hanno 405 veicoli/h sia in ingresso che in uscita dal centro commerciale e da questo consegue il livello di servizio B.

I livelli di servizio sono da ritenersi buoni (il massimo livello di servizio raggiunto è il C, con 23 secondi/veicolo).

3.2 Rotatoria all'intersezione tra SS 51 e via Calate (traffico generato della configurazione "screening 2013")

Si considera prima il traffico generato del sabato come nell'ipotesi del 2012, con il 60% attribuito agli ingressi e il 40% alle uscite.

Intersezione a rotatoria tra SS51 e Via Calate Livelli di servizio con centro commerciale attivo											
<u>ramo n.</u>	via/dire	ia/direzione Parametri dei rami									
1	Vittorio	Veneto	per il ver	nerdì			per il sal	ato			
2	Conegli										
3	Via Cal	ate	1	2	3		1	2	3		
Metodo ana	litico SE	TRA per la determina	zione de	la capac	ità e del	grado di	saturazio	ne			
capacità del ramo	veic/h	C=	1309	1294	1043		1309	1168	1075		
grado di saturazione del ramo		X=	0,83	0,70	0,58		0,90	0,82	0,58		
	Ve	rifica dei livelli di ser	/izio con	il metod	o HCM 2	000					
Flusso entrante	veic/h	Qe=	1089	909	600		1179	961	624		
Periodo di analisi (T=0,25 per un periodo di 15 min)	h	T=	0.25	0.25	0.25		0.25	0.25	0.25		
Ritardo medio secondo HCM	s/veic	d=	15	9	8		21	15	8		
Massimo numero di veicoli in coda (95%)	veic	Q95=	11	6	4		14	10	4		
Lunghezza media di veicoli in coda	m	Lcoda,med=	26	14	8		40	25	8		
Lunghezza massima della coda (95%)	m	Lcoda,95=	64	38	23		87	60	23		
Livello di servizio secondo HCM 2000		LoS(HCM)=	В	Α	Α		С	В	Α		

LoS - Highway Capacity Manual 2000								
Livello di servizio intersezione non semaforizzata	Ritardo	medio (s/	veicolo)					
A	0≤	d	≤ 10					
В	10 <	d	≤ 15					
C	15 <	d	≤ 25					
D	25 <	d	≤ 35					
E	35 <	d	≤ 50					
F	d (s)	>	50					

Traffico indotto il venerdì:

300 veicoli/h in ingresso 300 veicoli/h in uscita

Traffico indotto il sabato:

468 veicoli/h in ingresso 312 veicoli/h in uscita (sbilanciamento 60% - 40%)

Il ramo che presenta il maggiore carico è il n. 1 associato agli ingressi in rotatoria dalla direzione Vittorio Veneto, il venerdì con livello B e il sabato con livello C.

Per il ramo 2 al sabato si ha il livello di servizio B (con ritardo di 15 s/veicolo).

I livelli di servizio si possono definire buoni (il massimo livello di servizio raggiunto è il C, con un ritardo di 21 secondi/veicolo).

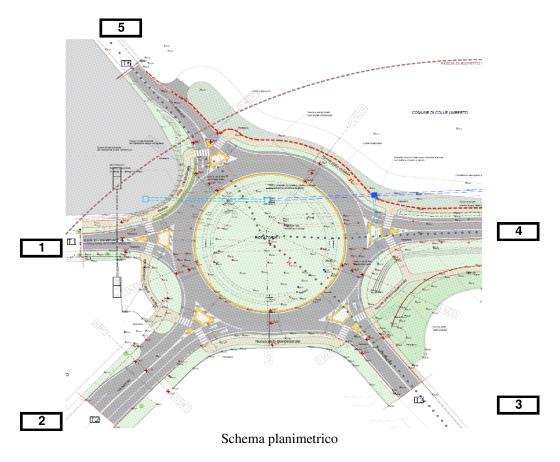
Di seguito si verifica lo scenario per il sabato, suddividendo il traffico generato in parti uguali tra ingressi e uscite (50% e 50%), come fatto per lo studio del 2013.

Intersezione a rotatoria tra SS51 e Via Calate Livelli di servizio con centro commerciale attivo (50% i e 50% u)									
<u>ramo n.</u>	via/dire	<u>ezione</u>		Parame	tri dei ra	ami			
1	Vittorio	Veneto		per il sab	ato				
2	Coneg			con cent	ro comme	erciale			
3	Via Ca	late		1	2	3			
Metodo analitico SET	TRA per la	n determinazione della cap	acità e del	grado di s	aturazione)			
capacità del ramo	veic/h	C=		1241	1222	1102			
grado di saturazione del ramo		x =		0,89	0,72	0,71			
Verifica	dei live	elli di servizio con il m	etodo HC	M 2000					
Flusso entrante	veic/h	Qe=		1101	883	780			
Periodo di analisi (T=0,25 per un periodo di 15 min)	h	T=		0,25	0,25	0,25			
Ritardo medio secondo HCM	s/veic	d=		20	10	11			
Massimo numero di veicoli in coda (95%)	veic	Q95=		13	7	6			
Lunghezza media di veicoli in coda	m	Lcoda,med=		37	15	14			
Lunghezza massima della coda (95%)	m	Lcoda,95=		80	40	38			
Livello di servizio secondo HCM 2000		LoS(HCM)=		С	Α	В			

LoS - Highway Capacity Manual 2000								
Livello di servizio intersezione non semaforizzata	Ritardo	o medio (s	/veicolo)					
A	0≤	d	≤ 10					
В	10 <	d	≤ 15					
c	15 <	d	≤ 25					
D	25 <	d	≤ 35					
E	35 <	d	≤ 50					
F	d (s)	>	50					

Traffico indotto il sabato:

390 veicoli/h in ingresso 390 veicoli/h in uscita


(bilanciamento 50% - 50%)

Anche in questo caso il ramo che presenta il maggiore carico è il n. 1, associato agli ingressi in rotatoria dalla direzione Vittorio Veneto.

Per il ramo 3 la ripartizione in parti uguali dei flussi implica, rispetto alla situazione di 7425 mq di s.d.v., il mantenimento del livello B (con un ritardo di 11 s/veicolo).

I livelli di servizio si possono definire buoni (il massimo livello di servizio raggiunto è il C, con un ritardo di 20 secondi/veicolo).

3.3 Rotatoria all'intersezione tra la SS 51, via Mattei, via Podgora e via Baracca (configurazione con traffico generato conseguente all'ampliamento)

Livelli di se		ntersezione a rota on centro commo									na afflu	enza	
ramo n.	via/dire							netri de					
1	Vittorio	Veneto	1										
2	via Mat	tei	Scenar	io 1					Scenari	io 2			
3	via Pod	lgora	senza c	entro co	ommerc	iale			con cer	ntro com	nmercial	e	
4	Conegl	iano	senza c	ollegam	ento Via	a Mattei-	-A27		senza d	ollegan	ento Vi	a Mattei	-A27
5	via Bar	acca	1	2	3	4	5		1	2	3	4	5
	Ме	todo analitico SETRA	A per la d	etermina	zione de	lla capac	ità e del	grado di	saturazio	one			
capacità del ramo	veic/h	C=	1303	1309	1037	1251	975		1226	1041	797	1174	737
grado di saturazione del													
ramo		x=	0,31	0,23	0,30	0,62	0,13		0,59	0,29	0,38	0,93	0,18
		Verifi	ca 2: livel	li di serv	izio con	il metodo	HCM 20	00					
Flusso entrante	veic/h	Qe=	410	306	306	777	130		720	306	306	1087	130
periodo di analisi													
(T=0,25 per un periodo	i i			i				ł	i		i	İ	İ
di 15 min)	h	T=	0,25	0,25	0,25	0,25	0,25		0,25	0,25	0,25	0,25	0,25
Ritardo medio secondo													
HCM	s/veic	d=	4	4	5	7	4		7	5	7	26	6
Massimo numero di													
veicoli in coda (95%)	veic	Q95=	1	1	1	5	0		4	1	2	15	1
Lunghezza media di													
veicoli in coda	m	Lcoda,med=	2	1	2	8	1		7	2	3	39	1
Lunghezza massima								I					
della coda (95%)	m	Lcoda,95=	8	5	7	27	3	I	24	7	11	93	4
Livello di servizio													
secondo HCM 2000		LoS(HCM)=	Α	Α	Α	Α	Α		Α	Α	Α	D	Α

Livelli di	Intersezione a rotatoria tra SS51, Via Mattei, Via Baracca, Via Podgora Livelli di servizio con centro commerciale attivo per 7425 mg di superficie di vendita: massima affluenza												
ramo n.	via/dire		erciale a	attivo p	er /425	inq al		netri de		massin	na amu	enza	
1	Vittorio	Veneto	1										
2	via Mat	tei	Scenar	io 3					Scenar	io 2			
3	via Pod	gora	senza c	entro co	ommerc	iale			con cer	ntro com	mercial	le	
4	Conegli	ano	con col	legamer	nto Via M	/lattei-A	27		con col	legamer	nto Via I	Mattei-A	27
5	via Bara	acca	1	2	3	4	5		1	2	3	4	5
	Me	todo analitico SETRA	A per la d	etermina.	zione de	lla capac	ità e del	grado di	saturazio	one			
capacità del ramo	veic/h	C=	1166	1392	1037	1251	975		1005	1218	797	1174	737
grado di saturazione del ramo		x=	0,20	0.34	0.30	0,62	0,13		0.39	0,52	0.38	0.93	0.18
		Verifi	ca 2: live	lli di serv	izio con	il metodo	HCM 20	00			· ·		
Flusso entrante	veic/h	Qe=	239	477	306	777	130		394	632	306	1087	130
periodo di analisi (T=0,25 per un periodo di 15 min)	h	T=	0.25	0.25	0.25	0.25	0.25		0.25	0.25	0.25	0.25	0.25
Ritardo medio secondo HCM	s/veic	d=	4	4	5	7	4		6	6	7	26	6
Massimo numero di veicoli in coda (95%)	veic	Q95=	1	2	1	5	0		2	3	2	15	1
Lunghezza media di veicoli in coda	m	Lcoda,med=	1	2	2	8	1		3	5	3	39	1
Lunghezza massima della coda (95%)	m	Lcoda,95=	5	9	7	27	3		11	19	11	93	4
Livello di servizio secondo HCM 2000		LoS(HCM)=	Α	Α	Α	Α	Α		Α	Α	Α	D	Α

LoS - Highway Capacity Manual 2000								
Livello di servizio intersezione non semaforizzata	Ritardo	o medio (s	/veicolo)					
A	0≤	d	≤ 10					
В	10 <	d	≤ 15					
С	15 <	d	≤ 25					
D	25 <	d	≤ 35					
E	35 <	d	≤ 50					
F	d (s)	>	50					

Traffico indotto: 310 veicoli/h in ingresso e in uscita dal ramo Conegliano (n. 4).

In tutte le valutazioni, il ramo che presenta il maggiore carico è il n. 4 associato agli ingressi in rotatoria dalla direzione Conegliano.

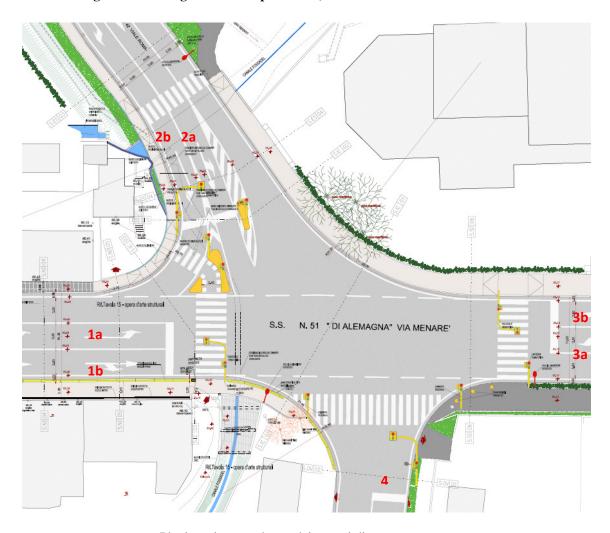
Gli altri rami presentano sempre il livello A.

I livelli di servizio sono da ritenersi accettabili (il massimo livello di servizio raggiunto è il D, con ritardo massimo di 26 s/veicolo).

3.4 Rotatoria all'intersezione tra la SS 51, via Mattei, via Podgora e via Baracca (traffico generato della configurazione "screening 2013")

		con centro comme	rciale a	attivo p	er 6188	mq di				massin	na afflu	enza	
ramo n. 1	via/dire	Veneto	Parametri dei rami										
2	via Ma		Scenario 1						Scenario 2				
3	via Ivia			entro co	mmerc	iala			con centro commerciale				
4	Coneg			ollegan			-A27					a Mattei-	-A27
 5	via Bar		1	2	3	4	5		1	2	3	4	5
		etodo analitico SETRA	per la d	etermina		lla capac		arado di	saturazio			·	
capacità del ramo	veic/h	C=	1303	1309	1037	1251	975	,	1229	1050	804	1177	745
grado di saturazione del	V 0.10,111		7000	7000	7007	1201	0,0		7220	7000	007	,,,,	740
ramo		x=	0,31	0,23	0,30	0,62	0,13		0,58	0,29	0,38	0,92	0,17
		Verifi	a 2: livel	li di serv	izio con	il metodo	HCM 20	00					
-lusso entrante	veic/h	Qe=	410	306	306	777	130		710	306	306	1077	130
periodo di analisi													
(T=0,25 per un periodo di 15 min)	h h	T=	0,25	0,25	0,25	0,25	0,25		0,25	0,25	0,25	0,25	0,25
Ritardo medio secondo		-											
HCM	s/veic	d=	4	4	5	7	4		7	5	7	24	6
Massimo numero di veicoli in coda (95%)	veic	Q95=	1	1	1	5	o		4	1	2	15	1
Lunghezza media di													
veicoli in coda	m	Lcoda,med=	2	1	2	8	1		7	2	3	36	1
Lunghezza massima della coda (95%)	m	Lcoda,95=	8	5	7	27	3		23 7		11	89	4
Livello di servizio													
secondo HCM 2000		LoS(HCM)=	Α	Α	Α	Α	Α		Α	Α	Α	С	Α
		ntersezione a rota	toria tra	a SS51,	Via Ma	ttei, Vi	a Barac		Podgo	ra			Α
Livelli di se	rvizio d	ntersezione a rota con centro comme	toria tra	a SS51,	Via Ma	ttei, Vi	a Barac superfi	cie di v	Podgoı endita:	ra			Α
Livelli di se	rvizio d via/dire	ntersezione a rota con centro comme ezione	toria tra	a SS51,	Via Ma	ttei, Vi	a Barac superfi		Podgoı endita:	ra			Α
Livelli di se ramo n. 1	rvizio (via/dire Vittorio	ntersezione a rota con centro comme ezione o Veneto	toria tra erciale a	a SS51, attivo p	Via Ma	ttei, Vi	a Barac superfi	cie di v	Podgoi endita: i rami	ra massin			Α
Livelli di se ramo n. 1 2	rvizio (via/dire Vittorio via Ma	ntersezione a rota con centro comme ezione o Veneto ttei	toria tra erciale a Scenari	a SS51, attivo po io 3	Via Ma er 7425	ttei, Via mq di	a Barac superfi	cie di v	Podgoi endita: i rami Scenari	ra massin io 2	na afflu	enza	Α
Livelli di se ramo n. 1 2 3	via/dire Vittorio via Ma via Poo	ntersezione a rota con centro comme ezione o Veneto ttei dgora	toria tra erciale a Scenari senza c	a SS51, attivo po io 3 centro co	Via Ma er 7425 ommerc	ttei, Via mq di	a Barac superfic Parar	cie di v	Podgor endita: i rami Scenari con cer	ra massin io 2 ntro com	na afflu	enza e	
Livelli di se ramo n. 1 2 3 4	via/dire Vittorio via Ma via Poo Coneg	ntersezione a rota con centro comme szione Veneto ttei dgora liano	toria tra erciale a Scenari senza c	a SS51, attivo po io 3 centro co legamen	Via Ma er 7425 ommerc nto Via I	ttei, Via mq di iale Mattei-A	a Barac superfic Parai	cie di v	Podgor endita: i rami Scenari con cer	ra massin io 2 ntro com legamer	na afflu nmercial nto Via N	enza e Mattei-A	27
Livelli di se ramo n. 1 2 3	via/dire via/dire via Ma via Pod Coneg via Bar	ntersezione a rota con centro comme ezione v Veneto ttei dgora liano racca	Scenari senza c con col	io 3 eentro co legamer	Via Ma er 7425 ommerc nto Via I	iale Mattei-A	a Barac superfic Parar 27	cie di v	Podgorendita: i rami Scenari con cer con col	massin io 2 ntro com legamer	na afflu	enza e	
Livelli di se ramo n. 1 2 3 4	via/dire via/dire via Ma via Pod Coneg via Bar	ntersezione a rota con centro comme szione Veneto ttei dgora liano	Scenari senza c con col	io 3 eentro co legamer	Via Ma er 7425 ommerc nto Via I	iale Mattei-A	a Barac superfic Parar 27	cie di v	Podgorendita: i rami Scenari con cer con col	massin io 2 ntro com legamer	na afflu nmercial nto Via N	enza e Mattei-A	27
ramo n. 1 2 3 4 5 capacità del ramo	via/dire via/dire via Ma via Pod Coneg via Bar	ntersezione a rota con centro comme ezione v Veneto ttei dgora liano racca	Scenari senza c con col	io 3 eentro co legamer	Via Ma er 7425 ommerc nto Via I	iale Mattei-A	a Barac superfic Parar 27	cie di v	Podgorendita: i rami Scenari con cer con col	massin io 2 ntro com legamer	na afflu nmercial nto Via N	enza e Mattei-A	27
Livelli di se ramo n. 1 2 3 4 5 capacità del ramo grado di saturazione del	via/dire Vittorio via Ma via Pod Coneg via Bar	ntersezione a rota con centro comme ezione veneto ttei dgora liano racca	Scenari senza c con col	a SS51, attivo posico 3 centro co legamen 2	Via Ma er 7425 ommerc nto Via I 3 zione de	iale Mattei-A ###################################	a Barac superfic Parac 27 5	cie di v	Podgorendita: i rami Scenari con cer con col	massin to 2 ntro com legamer 2 one	na afflu nmercial nto Via M	enza e Mattei-A2	27 5
Livelli di se ramo n. 1 2 3 4 5 capacità del ramo grado di saturazione del	via/dire Vittorio via Ma via Pod Coneg via Bar	ntersezione a rota con centro comme ezione Veneto ttei dgora liano racca etodo analitico SETRA C= x=	Scenari senza c con col 1 per la di	a SS51, attivo prior 3 seentro collegamer 2 setermina 1392 0,34	ommercento Via I 3 zione de 1037 0,30	iale Mattei-A 4 Ila capace 1251 0,62	Paraces Superfice Paraces Superfice Paraces Paraces Superfice Paraces	cie di vonetri de	Podgor endita: i rami Scenari con cer con col 1 saturazio	massin to 2 ntro com legamer 2 one 1223	na afflu nmercial nto Via M 3	enza e Mattei-A2 4	27 5 745
Livelli di se ramo n. 1 2 3 4 5 capacità del ramo grado di saturazione del ramo	rvizio (via/dire Vittorio via Ma via Poo Coneg via Bar weic/h	ntersezione a rota con centro comme ezione > Veneto ttei digora liiano racca etodo analitico SETRA C= X= Verifii	Scenari senza c con col 1 per la di 1166 0,20	a SS51, attivo profile a SS51, attivo profile	ommerchto Via I 3 zione de 1037 0,30	iale Mattei-A 4 Ila capac 1251 0,62	a Barac superfice Parac 27 5 ità e del 975 0,13 D HCM 20	cie di vonetri de	Podgoi endita: i rami Scenari con cer con col 1 saturazio 1011 0,38	massin to 2 thro com legamer 2 one 1223 0,51	nmercial to Via N 3 804 0,38	enza e Mattei-A 4 1177 0,92	27 5 745 0,17
Livelli di se ramo n. 1 2 3 4 5 capacità del ramo grado di saturazione del ramo	via/dire Vittorio via Ma via Pod Coneg via Bar	ntersezione a rota con centro comme ezione Veneto ttei dgora liano racca etodo analitico SETRA C= x=	Scenari senza c con col 1 per la d 1166 0,20	a SS51, attivo prior 3 seentro collegamer 2 setermina 1392 0,34	ommercento Via I 3 zione de 1037 0,30	iale Mattei-A 4 Ila capace 1251 0,62	Paraces Superfice Paraces Superfice Paraces Paraces Superfice Paraces	cie di vonetri de	Podgor endita: i rami Scenari con cer con col 1 saturazio	massin to 2 ntro com legamer 2 one 1223	na afflu nmercial nto Via M 3	enza e Mattei-A2 4	27 5 745
Livelli di se ramo n. 1 2 3 4 5 capacità del ramo grado di saturazione del ramo Flusso entrante periodo di analisi	rvizio (via/dire Vittorio via Ma via Poo Coneg via Bar weic/h	ntersezione a rota con centro comme ezione > Veneto ttei digora liiano racca etodo analitico SETRA C= X= Verifii	Scenari senza c con col 1 per la di 1166 0,20	a SS51, attivo profile a SS51, attivo profile	ommerchto Via I 3 zione de 1037 0,30	iale Mattei-A 4 Ila capac 1251 0,62	a Barac superfice Parac 27 5 ità e del 975 0,13 D HCM 20	cie di vonetri de	Podgoi endita: i rami Scenari con cer con col 1 saturazio 1011 0,38	massin to 2 thro com legamer 2 one 1223 0,51	nmercial to Via N 3 804 0,38	enza e Mattei-A 4 1177 0,92	27 5 745 0,17
Livelli di se ramo n. 1 2 3 4 5 capacità del ramo grado di saturazione del ramo Flusso entrante periodo di analisi (T=0,25 per un periodo	rvizio (via/dire Vittorio via Ma via Poo Coneg via Bar weic/h	ntersezione a rota con centro comme ezione Veneto ttei digora iliano racca etodo analitico SETRA C= X= Verifii	Scenari senza c con col 1 per la di 1166 0,20	a SS51, attivo p	ommerch via I 3 3 2 ione de 1037 0,30 izio con 306	iale Mattei-A 4 Illa capac 1251 0,62 il metodo	a Barac superfii Parai 27 5 ità e del 975 0,13 0 HCM 20	cie di vonetri de	Podgoi endita: i rami Scenari con cer con col 1 1 saturazio 1011 0,38	massin to 2 thro com legamer 2 one 1223 0,51	nmercial nto Via M 3 804 0,38	enza e Mattei-A2 4 1177 0,92	27 5 745 0,17
Livelli di se ramo n. 1 2 3 4 5 capacità del ramo grado di saturazione del ramo Flusso entrante periodo di analisi (T=0,25 per un periodo di 15 min)	rvizio (via/dire Vittorio via Ma via Poo Coneg via Bar weic/h	ntersezione a rota con centro comme ezione > Veneto ttei digora liiano racca etodo analitico SETRA C= X= Verifii	Scenari senza c con col 1 per la di 1166 0,20	a SS51, attivo profile a SS51, attivo profile	ommerchto Via I 3 zione de 1037 0,30	iale Mattei-A 4 Ila capac 1251 0,62	a Barac superfice Parac 27 5 ità e del 975 0,13 D HCM 20	cie di vonetri de	Podgoi endita: i rami Scenari con cer con col 1 saturazio 1011 0,38	massin to 2 thro com legamer 2 one 1223 0,51	nmercial to Via N 3 804 0,38	enza e Mattei-A 4 1177 0,92	27 5 745 0,17
Livelli di se ramo n. 1 2 3 4 5 capacità del ramo grado di saturazione del ramo Flusso entrante periodo di analisi (T=0,25 per un periodo di 15 min) Ritardo medio secondo	rvizio (via/dire Vittorio via Ma via Poo Coneg via Bar weic/h	ntersezione a rota con centro comme ezione Veneto ttei digora iliano racca etodo analitico SETRA C= X= Verifii	Scenari senza c con col 1 per la di 1166 0,20	a SS51, attivo p	ommerch via I 3 3 2 ione de 1037 0,30 izio con 306	iale Mattei-A 4 Illa capac 1251 0,62 il metodo	a Barac superfii Parai 27 5 ità e del 975 0,13 0 HCM 20	cie di vonetri de	Podgoi endita: i rami Scenari con cer con col 1 1 saturazio 1011 0,38	massin to 2 thro com legamer 2 one 1223 0,51	nmercial nto Via M 3 804 0,38	enza e Mattei-A2 4 1177 0,92	27 5 745 0,17
Livelli di se ramo n. 1 2 3 4 5 capacità del ramo grado di saturazione del ramo Flusso entrante periodo di analisi (T=0,25 per un periodo di 15 min) Ritardo medio secondo HCM Massimo numero di	vizio (via/dire Vittorio via Ma via Por Coneg via Bar veic/h veic/h h s/veic	ntersezione a rota con centro comme ezione Veneto ttei dgora liano racca etodo analitico SETRA C= X= Verifii Qe= T= d=	Scenaria con col 1 1 per la di 1166 0,20 239 0,25 4	a SS51, attivo price of the state of the sta	ommerce to Via I 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	iale Mattei-A 4 // / / / / / / / / / / / / / / / / /	27 5 ità e del 975 0,13 0 HCM 20 130 0,25 4	cie di vonetri de	Podgoi endita: i rami Scenari con cer con col 1 saturazio 1011 0,38 389 0,25 6	ra massin io 2 io 2 intro come 2 ione 1223 io,51 io 627 io,25 io 6	nmercial 11to Via N 3 804 0,38 306 0,25 7	enza e Mattei-A: 4 1177 0,92 1077 0,25 24	745 0,17 130 0,25 6
Livelli di se ramo n. 1 2 3 4 5 capacità del ramo grado di saturazione del ramo Flusso entrante periodo di analisi (T=0,25 per un periodo di 15 min) Ritardo medio secondo HCM Massimo numero di veicoli in coda (95%)	rvizio (via/dire Vittorio via Ma via Poo Coneg via Bar weic/h	ntersezione a rota con centro comme ezione > Veneto ttei digora liiano racca cetodo analitico SETRA C= x= Verifi Qe=	Scenaris senza con col 1 per la di 1166 0,20 239 0,25	a SS51, attivo p io 3 centro co legamer 2 cetermina 1392 0,34 ii di serv 477	ommerce to Via I 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	iale Mattei-A 4 Ila capace 1251 0,62 ii metodo	a Barac superfii Parar 27 5 iità e del , 975 0,13 b HCM 20 130	cie di vonetri de	Podgoi endita: i rami Scenari con col 1 saturazic 1011 0,38	ra massin io 2 intro com legamer 2 one 1223 0,51	nmercial nto Via N 3 804 0,38 306 0,25	enza e Mattei-A: 4 1177 0,92 1077 0,25	745 0,17 130
Livelli di se ramo n. 1 2 3 4 5 capacità del ramo grado di saturazione del ramo Flusso entrante periodo di analisi (T=0,25 per un periodo di 15 min) Ritardo medio secondo HCM Massimo numero di veicoli in coda (95%) Lunghezza media di	vizio (via/dire Vittorio via Ma via Poo Coneg via Bar veic/h h s/veic veic	ntersezione a rota con centro comme ezione Veneto ttei digora liiano racca etodo analitico SETRA C= X= Verifi Qe= T= d= Q95=	Scenaria con col 1 per la de 1166 0,20 239 0,25 4	a SS51, attivo price of the strength of the st	ommercito Via I 3 zione de 1037 0,30 izio con 306 0,25 5	iale Mattei-A Ila capac 1251 0,62 Il metodo 777 0,25 7	27 5 ità e del . 975 0,13 0 HCM 20 130 0,25 4 0	cie di vonetri de	Podgoi endita: i rami Scenari con cer con col 1 saturazic 1011 0,38 389 0,25 6 2	ra massin io 2 intro com legamer 2 one 1223 0,51 627 0,25 6 3	nna afflu nmercial nto Via M 3 804 0,38 306 0,25 7	enza e Mattei-A: 4 1177 0,92 1077 0,25 24 15	745 0,17 130 0,25 6
Livelli di se ramo n. 1 2 3 4 5 capacità del ramo grado di saturazione del ramo Flusso entrante periodo di analisi (T=0,25 per un periodo di 15 min) Ritardo medio secondo HCM Massimo numero di veicoli in coda (95%)	vizio (via/dire Vittorio via Ma via Por Coneg via Bar veic/h veic/h h s/veic	ntersezione a rota con centro comme ezione Veneto ttei dgora liano racca etodo analitico SETRA C= X= Verifii Qe= T= d=	Scenaria con col 1 1 per la di 1166 0,20 239 0,25 4	a SS51, attivo price of the state of the sta	ommerce to Via I 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	iale Mattei-A 4 // / / / / / / / / / / / / / / / / /	27 5 ità e del 975 0,13 0 HCM 20 130 0,25 4	cie di vonetri de	Podgoi endita: i rami Scenari con cer con col 1 saturazio 1011 0,38 389 0,25 6	ra massin io 2 io 2 intro come 2 ione 1223 io,51 io 627 io,25 io 6	nmercial 11to Via N 3 804 0,38 306 0,25 7	enza e Mattei-A: 4 1177 0,92 1077 0,25 24	745 0,17 130 0,25 6
Livelli di se ramo n. 1 2 3 4 5 capacità del ramo grado di saturazione del amo Flusso entrante periodo di analisi (T=0,25 per un periodo di 15 min) Ritardo medio secondo HCM Massimo numero di veicoli in coda (95%) Lunghezza media di veicoli in coda	vizio (via/dire Vittorio via Ma via Poo Coneg via Bar veic/h h s/veic veic	ntersezione a rota con centro comme ezione Veneto ttei digora liiano racca etodo analitico SETRA C= X= Verifi Qe= T= d= Q95=	Scenaria con col 1 per la de 1166 0,20 239 0,25 4	a SS51, attivo price of the strength of the st	ommercito Via I 3 zione de 1037 0,30 izio con 306 0,25 5	iale Mattei-A Ila capac 1251 0,62 Il metodo 777 0,25 7	27 5 ità e del . 975 0,13 0 HCM 20 130 0,25 4 0	cie di vonetri de	Podgoi endita: i rami Scenari con cer con col 1 saturazic 1011 0,38 389 0,25 6 2	ra massin io 2 intro com legamer 2 one 1223 0,51 627 0,25 6 3	nna afflu nmercial nto Via M 3 804 0,38 306 0,25 7	enza e Mattei-A: 4 1177 0,92 1077 0,25 24 15	745 0,17 130 0,25 6

LoS - Highway Capacity Manual 2000								
Livello di servizio intersezione non semaforizzata	Ritardo	o medio (sa	veicolo)					
A	0≤	d	≤ 10					
В	10 <	d	≤ 15					
C	15 <	d	≤ 25					
D	25 <	d	≤ 35					
Е	35 <	d	≤ 50					
F	d (s)	>	50					


Traffico indotto: 300 veicoli/h in ingresso e in uscita dal ramo Conegliano (n. 4)

In tutte le valutazioni, il ramo che presenta il maggiore carico è il n. 4 associato agli ingressi in rotatoria dalla direzione Conegliano.

Gli altri rami presentano sempre il livello A.

I livelli di servizio sono da ritenersi buoni (il massimo livello di servizio raggiunto è il C, con ritardo massimo di 24 s/veicolo).

3.5 Incrocio del Menarè tra SS 51, via Roma (SP 42) e via Pastin Santin (configurazione con traffico generato conseguente all'ampliamento)

Planimetria con schema dei gruppi di manovre

LoS - Highway Capacity Manual 2000									
LoS intersezione semaforizzata	Ritardo	Ritardo medio (s/veicolo)							
A	0≤	d	≤ 10						
В	10 <	d	≤ 20						
C	20 <	d	≤ 35						
D	35 <	d	≤ 55						
E	55 <	d	≤ 80						
F	d (s)	>	80						

Livelli di servizio secondo HCM 2000

Traffico indotto: 310 veicoli/h in ingresso e in uscita dal ramo Vittorio Veneto (n. 1)

INCROCIO " MENARE' " - ORA DI PUNTA DEL VENERDI' MASSIMA AFFLUENZA VERIFICA HCM 2000. MODULO PER I LIVELLI DI SERVIZIO								
DIREZIONE	1		2		3		4	
GRUPPI DI CORSIE	а	b	а	b	а	b	unica	
MANOVRE	1-2 SX	1-3,4	2-3,4	2-1 DX	3-4 SX	3-1,2	4-1,2,3	
Durata del ciclo C (s)	120	120	120	120	120	120	120	
Flusso veicolare, Q (veic/h)	113	1178	169	62	199	1033	302	
Rapporto di verde, VE/C	0,15	0,61	0,19	0,36	0,15	0,61	0,19	
Rapporto di saturazione, X	0,44	1,00	0,61	0,11	0,80	0,90	0,89	
Capacità, c (veic/h)	254	1180	275	563	249	1147	339	
d ₁ (sec)	46	23	44	26	49	20	47	
d ₂ (sec)	6	26	10	0	23	11	28	
d ₃ (sec)	0	0	0	0	0	0	0	
PF	1	1	1	1	1	1	1	
Ritardo medio per il gruppo di corsie, d (sec)	52	49	54	26	72	32	75	
LdS per il gruppo di corsie	D	D	D	С	Е	C	Е	
Ritardo medio per il ramo (sec)	c) 50 47 38							
LdS per il ramo	D)		D	E	
Ritardo medio per l'intersezione				47				
LdS per l'interasezione	dS per l'interasezione D							

Il livello di servizio peggiore è pari ad E; si verifica per la svolta a sinistra da Conegliano (3) verso Scomigo (4) e per l'intero gruppo di corsie della Via Pastin Santin (4), che non presenta la canalizzazione delle manovre.

3.6 Incrocio del Menarè tra SS 51, via Roma (SP 42) e via Pastin Santin (s.d.v. autorizzata)

INCROCIO " MENARE' " - ORA DI PUNTA DEL VENERDI' MASSIMA AFFLUENZA VERIFICA HCM 2000. MODULO PER I LIVELLI DI SERVIZIO								
DIREZIONE	IVI 2000. IVI	JDULU P	2			3	4	
GRUPPI DI CORSIE	а	b	а	b	а	b	unica	
MANOVRE	1-2 SX	1-3,4	2-3,4	2-1 DX	3-4 SX	3-1,2	4-1,2,3	
Durata del ciclo C (s)	120	120	120	120	120	120	120	
Flusso veicolare, Q (veic/h)	112	1168	169	61	199	1023	301	
Rapporto di verde, VE/C	0,15	0,61	0,19	0,36	0,15	0,61	0,19	
Rapporto di saturazione, X	0,44	0,99	0,61	0,11	0,80	0,89	0,89	
Capacità, c (veic/h)	254	1180	275	563	249	1146	339	
d ₁ (sec)	46	23	44	26	49	20	47	
d ₂ (sec)	5	24	10	0	23	11	27	
d ₃ (sec)	0	0	0	0	0	0	0	
PF	1	1	1	1	1	1	1	
Ritardo medio per il gruppo di corsie, d (sec)	52	47	54	26	72	31	75	
LdS per il gruppo di corsie	D	D	D	С	ш	C	E	
Ritardo medio per il ramo (sec)	47 47 38 79							
LdS per il ramo	D)		D	E	
Ritardo medio per l'intersezione				46				
LdS per l'interasezione				D				

LoS - Highway Capacity Manual 2000								
LoS intersezione semaforizzata	Ritardo medio (s/veicolo)							
A	0≤	d	≤ 10					
В	10 <	d	≤ 20					
C	20 <	d	≤ 35					
D	35 <	d	≤ 55					
E	55 <	d	≤ 80					
F	d (s)	>	80					

Traffico indotto: 300 veicoli/h in ingresso e in uscita dal ramo Vittorio Veneto (n. 1)

Rispetto alla verifica con 7.425 mq di superficie di vendita i livelli di servizio non sono variati e al più si osservano delle lievi diminuzioni dei ritardi (di 2 secondi/veicolo per il gruppo di corsie 1 - 3,4, di 1 secondo/veicolo per il gruppo 3 - 1,2, di 3 secondi/veicolo per il ramo 1 e di 1 secondo/veicolo per il livello generale).

4. Conclusioni

Con la superficie di vendita oggetto di screening (attuale), le verifiche in corrispondenza dei tre nodi di interesse hanno evidenziato:

- a) per la rotatoria all'intersezione tra la SS 51 e via Calate, al venerdì, il livello di servizio C per il ramo di Vittorio Veneto, con un ritardo di 16 secondi/veicolo (pertanto è solo di una unità oltre il livello di servizio B).
- b) per la rotatoria di via Calate, al sabato, il livello di servizio C per il ramo di Vittorio Veneto con un ritardo di 23 secondi/veicolo.
- c) per la rotatoria della zona industriale, il livello di servizio D per il ramo di Conegliano, con un ritardo di 26 s/veicolo (1 unità oltre il livello di servizio C);
- d) per l'incrocio del Menarè, il livello di servizio E per la svolta a sinistra da Conegliano verso Scomigo (con ritardo 72 s/veicolo) e per il ramo di via Pastin Santin (ritardo di 75 s/veicolo); il livello del nodo è D (con 47 s/veicolo).

Con la superficie di vendita già autorizzata (screening 2013), le verifiche in corrispondenza dei tre nodi di interesse hanno evidenziato quanto accadrebbe in caso di rinuncia all'ampliamento:

- e) per la rotatoria all'intersezione tra la SS 51 e via Calate, al venerdì, diminuisce il ritardo di 1 s/veicolo, sufficiente a portare il livello di servizio massimo da C a B; il valore del livello B è pertanto quello del limite di intervallo tra B e C (15 s/veicolo).
- f) per la rotatoria di via Calate, al sabato, si ha l'invarianza del livello di servizio massimo, che rimane C, con una contenuta diminuzione del ritardo sia nel caso della ripartizione 60% 40%, che nel caso 50% 50% (rispettivamente 2 s/veicolo e 3 s/veicolo);
- g) per la rotatoria della zona industriale, la diminuzione del ritardo di 2 s/veicolo, tale da ridurre il livello di servizio massimo da D a C; si deve tener presente però che la situazione con 7425 mq ricadeva in classe D soltanto per il superamento del limite di intervallo della classe C per 1 s/veicolo;
- h) per l'incrocio del Menarè, l'invarianza dei livelli di servizio per i gruppi di corsie, i rami e globale del nodo e al più si osservano minime diminuzioni dei ritardi.

Il confronto tra i livelli di servizio ottenuti con le verifiche è proposto dalla seguente tabella:

Livelli di servizio massimi (LOS) e relativi ritardi in s								
Nodi					Tipo LOS HCM 2000	screening	autorizzata	
SS 51 - via Cal	551 - via Calate venerdì					т.	C (16)	B (15)
SS 51 - via Cal	ate sabat	to (60	% - 409	%)		Intersezione	C (22)	C (21)
SS 51 - via Cal	ate sabat	to (50	% - 509	%)		non -semaforizzata	C (23)	C (20)
Zona industriale						Semarorizzad	D (26)	C (24)
Incrocio Menar	é corsie	e gru	ppi di c	orsie		intersezione	E (72-75)	E (72-75)
Incrocio Menar	Incrocio Menaré intero					semaforizzata	D (47)	D (46)
LoS - Highwa	y Capacity M	Ianual 2	000			LoS - Highway	Capacity Manu	ıal 2000
Livello di servizio						ntersezione orizzata	Ritardo medi	o (s/veicolo)
intersezione non semaforizzata	Ritardo n	nedio (s/	veicolo)			A	0 ≤ d	≤ 10
A	0≤	d	≤ 10			В	10 < d	≤ 20
В	10 <	d	≤ 15			C	20 < d	≤ 35
C	15 <	d	≤ 25			D	35 < d	≤ 55
D	25 <	d	≤ 35			E	55 < d	≤ 80
E F	35 < d (s)	<u>d</u> >	≤ 50 50			F	d (s) >	

Pertanto gli effetti dell'ampliamento non sono tali da modificare in senso significativamente negativo la situazione, e non comportano il superamento dei limiti di accettabilità.

La conclusione innanzi esposta, per cui l'ampliamento (peraltro modesto) del centro commerciale non modifica in senso significativamente negativo la situazione e non comporta il superamento dei limiti di accettabilità rispetto a quanto già esaminato dallo "screening 2013", tiene conto – come il progetto approvato con lo "screening 2013" - della realizzazione di alcune delle opere viarie previste dall'"Accordo di Programma ai sensi dell'art. 32 della L.R. 35/2001 per la sistemazione di punti critici della viabilità della SS 51 di Alemagna e contestuale riqualificazione dell'area ex Ipsa in Comune di Colle Umberto" approvato con DPGR n. 58 del 24.03.2010, tra Regione Veneto, Provincia di Treviso, Comuni di Colle Umberto, Conegliano, Vittorio Veneto e Anas s.p.a. oltre che l'Impresa Tonon s.p.a..

Con tale accordo, invero, è stata prevista la realizzazione di alcune opere, in parte finanziate interamente con risorse pubbliche, in parte con risorse private, finalizzate a migliorare i livelli di congestione della viabilità e la sicurezza di quel tratto di strada tenendo anche in considerazione la riqualificazione dell'area ex Ipsa mediante la realizzazione, tra l'altro, di una grande struttura di vendita con una superficie coperta massima di 19.000 mq (a fronte di quella in esame di circa 12.800 mq).

In particolare, si ricorda, tra le opere viarie previste dall'Accordo di Programma in questione interamente a carico dell'Impresa Tonon s.p.a. vi sono: 1) la riorganizzazione dell'intersezione tra la SS n. 51 "di Alemagna", via Baracca e gli accessi alla zona industriale del Comune di Vittorio Veneto (via Mattei) e Conegliano mediante realizzazione di una rotatoria (per un costo di € 650.736,00); 2) la sistemazione dell'incrocio di Via Menarè mediante la realizzazione di ulteriori corsie di manovra ad integrazione e supporto dell'esistente incrocio semaforico (per un costo di € 272.745,00); 3) la sistemazione tra la SS n. 51 di Alemagna e via Calate mediante realizzazione di una rotatoria in Comune di Colle Umberto; 4) la sistemazione della strada comunale Via Piave in Comune di Colle Umberto.

L'esecuzione di quest'ultime due ultime opere, il cui costo è stimato in circa € 1.900.000, è peraltro posta, oltre che dalle previsioni dell'Accordo di Programma, anche dallo strumento urbanistico vigente del Comune di Colle Umberto, come condizione di agibilità dell'edificio commerciale a grande struttura di vendita.

Le altre due opere (rotatoria zona industriale e incrocio Menarè), invece, non sono strettamente legate alla realizzazione dell'intervento commerciale e, in ogni caso, non ne condizionano l'agibilità, pur essendo poste interamente a carico dell'Impresa Tonon s.p.a..

Ad ogni buon conto, a prescindere dalla circostanza che condizionino o meno l'agibilità dell'intervento commerciale, l'Impresa Tonon s.p.a. ha comunque dato avvio all'esecuzione di tutte le predette opere previste dal precitato Accordo di Programma a proprio carico e le stesse attualmente si trovano in una fase avanzata di realizzazione.

Tenendo conto anche di tali opere è possibile concludere, come innanzi evidenziato, che l'ampliamento (peraltro marginale, trattandosi di ampliare il centro commerciale di 1.237 mq, rinunziando al contempo ad un esercizio di media struttura di 1.000 mq, e dunque con un aumento netto di soli 237 mq) del centro commerciale comporta delle modeste variazioni che non sono idonee a incidere in senso significativamente negativo la situazione e non comportano il superamento dei limiti di accettabilità rispetto alla superficie di vendita già autorizzata (screening 2013).