PROVINCIA DI REGIONE COMUNE DI TREVISO VENETO SUSEGANA

FORNACI CALCE GRIGOLIN STABILIMENTO DI SUSEGANA

Modifiche impiantistiche e gestionali

Studio di ricaduta delle emissioni in atmosfera Integrazioni richieste dalla Provincia di Treviso: punti 19, 20, 22 - 27

Committente:

Via IV Novembre, 18 31010 - Ponte della Priula (TV) Italy www.gruppogrigolin.it Tel. +39 0438 4461 Fax +39 0438 445110

Estensore:

c/o Parco Scientifico Tecnologico VEGA ed. Auriga - via delle Industrie, 9 30175 Marghera (VE) www.eambiente.it; info@eambiente.it Tel. 041 5093820; Fax 041 5093886

	E	Environmental As	sessment & Permitting	Commessa: C18-005793								
1		1	_		1							
	03	12.10.2018	Prima Emissione	Integrazioni_punti_19-20-22-27	AA	ER	GC					
	Rev.	Data	Oggetto	File	Redatto	Verificato	Approvato					

SOMMARIO

1. INTEGRAZIONI RICHIESTE DALLA PROVINCIA DI TREVISO	2
1.1 PUNTO 19	2
1.2 PUNTO 20	3
1.3 PUNTO 22	5
1.4 PUNTO 23	11
1.5 PUNTO 24	11
1.6 PUNTO 25	11
1.7 PUNTO 26	11
1.8 PUNTO 27	12
INDICE TABELLE	
Tabella 1-1. Dati relativi al funzionamento degli impianti della ditta Fornaci calce Grigolin	2
Tabella 1-2. Portate volumetriche e concentrazioni rilevate presso gli impianti della ditta Superbeton (condizioni di riferimento Tabella 1-3. Calcolo delle portate medie allo stato di progetto	
Tabella 1-4. Portate volumetriche e concentrazioni rilevate presso gli impianti della ditta Fornace Calce Grigolin (condizioni di riferimento)	
Tabella 1-5. Statistiche relative agli impianti della ditta Fornaci Calce Grigolin	
Tabella 1-6. Caratteristiche e coordinate dei recettori sensibili	13
INDICE FIGURE	
Figura 1-1. Estratto delle mappe di ricaduta relativo al PM10.	12
Figura 1-2. Localizzazione dei recettori sensibili	13

eAmbiente S.r.l. - P.I. C.F. 03794570261

1. INTEGRAZIONI RICHIESTE DALLA PROVINCIA DITREVISO

1.1 PUNTO 19

"Nella stima delle emissioni e di dispersione degli inquinanti atmosferici devono essere considerati tutti i punti notevoli di emissione in una prospettiva di valutazione di tipo 'integrato' che caratterizzi in modo completo ed esauriente tutte le fonti di emissione tutte le fonti di emissione industriale attualmente presenti ed operanti nel perimetro industriale; in particolare, la quantificazione delle fonti di emissione di tipo puntuale dovrà comprendere al minimo i principali (definiti in termini di ore lavorate/anno) punti di emissione per cui sono disponibili dati di autocontrollo, focalizzando l'attenzione su due inquinanti: NO_x e polveri (in mancanza di dati misurati si potrà ricorrrere ad una stima di tipo "obiettivo" sulla base dei limiti autorizzati); in particolare si segnala la necessità di integrare nella stima anche il contributo delle emissioni di NO_x derivanti dal punto di essiccazione FM1, attualmente non ricompreso nella valutazione di impatto".

La simulazione modellistica è stata aggiornata con l'inserimento di tutti i punti di emissione dello stabilimento di Fornaci Calce Grigolin e di Superbeton. Per essi oggetto di limite e monitoraggio è il parametro "polveri", non derivanti da processi di combustione e/o decarbonatazione, quindi fisicamente e chimicamente diverse da quelle emesse dei forni, che cautelativamente sono state assimilate al PM10.

Nella nuova simulazione è stato implementato anche il punto di essiccazione FM1, che oltre al particolato generico, disperde in atmosfera NOx, al fine di valutare l'impatto cumulato correlato a tali inquinanti. Nella tabella seguente sono forniti i dati degli impianti appartenenti alla ditta Fornace Calce Grigolin, riguardo gli inquinanti autorizzati per le emissioni e i termini di funzionamento annuo. Per ulteriori dettagli si rimanda al capitolo 6.2 dello Studio di ricaduta rev. 03 del 12.10.2018.

Tabella 1-1. Dati relativi al funzionamento degli impianti della ditta Fornaci calce Grigolin

Camino	Punto emissione	Inquinanti	Funzionamento annuo (giorni)	Funzionamento giornaliero (h/giorno)
1	Forno Maerz 2	NO _x , Polveri (PM10), COT, HCl, HF, SO2, Cd+Tl, Hg, Somma Metalli*, PCDD+PCDF, IPA	350	24
1M	Forno Maerz 1	NO _x , Polveri (PM10), COT, HCl, HF, SO2, Cd+Tl, Hg, Somma Metalli*, PCDD+PCDF, IPA	350	24
12	Forno CIM	NO _x , Polveri (PM10), COT, HCl, HF, SO2, Cd+Tl, Hg, Somma Metalli*, PCDD+PCDF, IPA	350	24
5	ldratazione ossido di calcio	Polveri	350	10
6	Molino macinazione ossido di calcio	Polveri	350	18
7	Silo polmone impianto idratazione calce (in alternativa al 6)	Polveri	350	8

Rev.

eAmbiente S.r.l. - P.I. C.F. 03794570261

Camino	Punto emissione	Inquinanti	Funzionamento annuo (giorni)	Funzionamento giornaliero (h/giorno)
15A	Estrazione, trasporto e carico automezzi ossido di calcio	Polveri	350	24
29	Filtro segatura	Polveri	350	24
FM1	Essicazione	Polveri, NO _x	260	20
FM2	Macinazione e trasporto	Polveri	260	20
FM7	Insaccaggio	Polveri	260	20
45	Estrazione ossido di calcio e trasporto ai sili	Polveri	260	13
53°	filtro scarico automezzi segatura	Polveri	300	12
53B	filtro scarico automezzi segatura	Polveri	350	24
55	Impianto di macinazione e vagliatura segatura	Polveri	350	24
	omma Metalli'' si +Cr+Co+Cu+Mn+Ni+V	intende la somma delle +Sn.	concentrazioni dei	seguenti composti:

1.2 **PUNTO 20**

"Per quanto attiene alla completa caratterizzazione delle stime si ricorda l'opportunità di ricomprendere nella valutazione anche i punti emissione di "Superbeton SpA" che insistono all'interno dello stesso sedime industriale oggetto di valutazione: il principale parametro da considerare sono le polveri la cui stima potrà essere effettuata tramite dati di autocontrollo (ove presenti) e/o valutazioni obiettive sulla base di limiti autorizzati".

Come anticipato nel punto precedente la simulazione modellistica è stata integrata con i punti di emissione della ditta Superbeton SpA; la simulazione è stata effettuata per il particolato generico, definito come "Polveri". In questo modo è stato possibile valutare l'impatto cumulato dell'intero stabilimento per questo parametro. Di seguito si riportano i dati relativi a portate volumetriche e concentrazioni in condizioni normali. dedotti dai rapporti di prova messi a disposizione dalla Società.

Tabella 1-2. Portate volumetriche e concentrazioni rilevate presso gli impianti della ditta Superbeton (condizioni di riferimento)

				Data	Data	Data		
Camino	Provenienza	Parametro	u.m.	Lug - S et 2011	mag-16	giu-17	Media	
1	Produzione cemento:	Polveri	mg/Nm³	8,0	12,5	4,7	8,4	
'	macinazione e vagliatura da mulino n° 1	Q	Nm³/h	28900	35748,0	30522,0	31723,3	
2		Polveri	mg/Nm³	1,6	1,1	13,3	5,3	

Rev.

02

				Data	Data	Data	
Camino	Provenienza	Parametro	u.m.	Lug - S et 2011	mag-16	giu-17	Media
	Produzione cemento: riempimento sili	Q	Nm³/h	5330,0	5791,0	5409,0	5510,0
3	Sfiato sili operazioni carico	Polveri	mg/Nm³	1,9	2,3	1,6	1,9
	automezzi	Q	Nm³/h	2950,0	3007,0	1739,3	2565,4
4	Macinazione e vagliatura da	Polveri	mg/Nm³	42,0	42,0	41,5	41,8
T	molino 2	Q	Nm³/h	34200,0	37109,0	35102,0	35470,3
5	Linea trasporto automatico	Polveri	mg/Nm³	2,7	0,3	0,3	1,1
	Linea trasporto automatico	Q	Nm³/h	1250,0	1657,0	916,7	1274,6
6	Lines tracporte sutematica	Polveri	mg/Nm³	1,9	2,9	1,0	1,9
0	Linea trasporto automatico	Q	Nm³/h	1500,0	1854,0	1020,0	1458,0
7	Linea estrazione clinker nuovi sili	Polveri	mg/Nm³	0,8	1,1	1,3	1,1
,	Linea estrazione ciinker nuovi siii	Q	Nm³/h	2400,0	3133,0	2234,0	2589,0
8	Comico/sosmico musuli sili	Polveri	mg/Nm³	0,4	0,3	0,8	0,5
0	Carico/scarico nuovi sili	Q	Nm³/h	3600,0	3911,0	3395,7	3635,6
9	Conico los misos musui sili	Polveri	mg/Nm³	0,4	0,5	0,9	0,6
9	Carico/scarico nuovi sili	Q	Nm³/h	3100,0	3381,0	3208,7	3229,9
10	Linea di trasporto all'impianto di	Polveri	mg/Nm³	0,1	0,3	0,9	0,4
10	insaccaggio	Q	Nm³/h	3270,0	3653,0	2634,0	3185,7
11	Linea di trasporto clinker ai	Polveri	mg/Nm³	1,2	0,3	4,7	2,1
11	nuovi sili	Q	Nm³/h	1760,0	2167,0	2273,0	2066,7
12	Mariana	Polveri	mg/Nm³	3,3	1,1	1,0	1,8
12	Movimentazione con elevatore	Q	Nm³/h	4850,0	1571,0	2634,0	3018,3
12	12 422	Polveri	mg/Nm³	0,6	0,3	11,3	4,1
13	Linea di insaccaggio	Q	Nm³/h	26300,0	29218,0	28184,0	27900,7
1.4	Coming output	Polveri	mg/Nm³	0,8	5,2	0,3	2,1
14	Carico automezzi	Q	Nm³/h	1450,0	1303,0	1329,0	1360,7
45	C	Polveri	mg/Nm³	0,8	1,3	1,2	1,1
15	Stoccaggio ceneri	Q	Nm³/h	1360,0	970,0	1121,7	1150,6
14	Produzione cemento – deposito	Polveri	mg/Nm³	-	1,2	0,3	1,0
16	clinker e vagliatura/stoccaggio segatura di legno	Q	Nm³/h	-	38333	15395	31288,0
40	Produzione cls stoccaggio sili	Polveri	mg/Nm³	28,0	1,1	0,9	10,0
1B	cemento	Q	Nm³/h	500,0	355,0	164,3	339,8
20	Produzione cls stoccaggio sili	Polveri	mg/Nm³	13,0	0,3	1,3	4,9
2B	calce	Q	Nm³/h	550,0	356,0	149,0	351,7
20	Produzione cls carico	Polveri	mg/Nm³	33,0	0,6	2,6	12,1
3B	autobetoniere	Q	Nm³/h	4580,0	4929,0	1802,0	3770,3
4B		Polveri	mg/Nm³	1,2	0,7	0,6	0,8

				Data	Data	Data	
Camino	Provenienza	Parametro	u.m.	Lug - S et 2011	mag-16	giu-17	Media
	Produzione cls carico autobetoniere	Q	Nm³/h	3800,0	3813,0	4622,0	4078,3
5B	Produzione cls stoccaggio sili ceneri	Polveri	mg/Nm³	9,6	4,3		7,0
36		Q	Nm³/h	500,0	430,0		465,0
6B	Produzione cls stoccaggio silo	Polveri	mg/Nm³	0,1	8,2	1,2	3,2
OB	cemento	Q	Nm³/h	4700,0	2353,0	3964,3	3672,4

1.3 PUNTO 22

"Presentazione e discussione ragionata dei ratei di emissione utilizzati in ingresso al modello di simulazione al fine di caratterizzare l'attività del complesso industriale oggetto di valutazione: si raccomanda di produrre una tabella riassuntiva che evidenzi la variabilità statistica dei ratei di emissione (min, media, mediana, max e percentili notevoli: 5, 25, 50, 75, 95), in modo tale da poter caratterizzare con maggiore precisione il livello di incertezza associato alle stime modellistiche e quindi disporre indirettamente di un'analisi di sensitività dei risultati finali".

Nella Tabella 1-4 si riportano gli esiti dei rapporti di prova relativi agli impianti della ditta Fornace Calce Grigolin, relativi ai monitoraggi svolti nel periodo gennaio 2014 – dicembre 2017. In Tabella 1-5 invece sono riportate le statistiche richieste, determinate per le portate volumetriche e concentrazioni espresse per fumi secchi e condizioni di riferimento (temperatura pari a 0° C, pressione di 101,3 kPa e ossigeno di riferimento). Per gli impianti Superbeton è stata riportata esclusivamente la media, a causa dell'esiguo numero di dati a disposizione.

Concentrazioni e portate medie sono state utilizzate per la determinazione dei flussi di massa utilizzati come dati in ingresso al modello. Essendo i forni di produzione calce gli unici punti di emissione interessati da modifiche impiantistiche, la portata media di funzionamento è stata determinata secondo il rapporto tra portata di progetto e portata autorizzata, secondo le informazioni riportate nella tabella seguente.

Tabella 1-3. Calcolo delle portate medie allo stato di progetto

Camini	Provenienza	Portata autorizzata stato di fatto (Qf)	Portata nominale di progetto (Qp)	Qp/Qf	Portata media stato di fatto	Portata media stato di progetto
		Nm³/h	Nm³/h		Nm³/h	Nm³/h
1	Forno Maerz 2	82.000	79.000	0,963	49.900	48.074
1M	Forno Maerz 1	30.000	39.000	1,300	23.590	30.667
12	Forno CIM	28.000	38.000	1,357	22.740	30.861

Rev.

02

Tabella 1-4. Portate volumetriche e concentrazioni rilevate presso gli impianti della ditta Fornace Calce Grigolin (condizioni di riferimento)

Camino	Parametro	u.m.	Data	Data	Data	Data	Data	Data	Data	Data	Data	Data	Data	Data	Data	Data	Data
Camino	Farametro	u.m.	gen-14	mar-14	giu-14	dic-14	feb-15	lug-15	ott-15	dic-15	feb-16	mag-16	lug-16	dic-16	mar-17	mag-17	dic-17
	Q	Nm³/h	47.100	-	56.286	52.050	-	49.900	-	42.305	-	-	47.023	60.696	-	46.895	46.846
	NO _x	mg/Nm³	256,0	-	206,0	221,0	-	318,0	-	224,0	-	-	338,0	287,0	-	402,0	308,0
	Polveri	mg/Nm³	0,1	-	0,1	3,1	-	1,2	-	1,0	-	-	1,2	1,4	-	2,6	2,3
	СОТ	mg/Nm³	3,9	-	1,2	1,1	-	2,8	-	2,6	-	i	0,6	1,0	-	0,8	0,8
	HCI	mg/Nm³	1,1	-	0,4	0,1	-	1,4	-	1,3	-	-	0,1	0,9	-	0,4	0,2
1	HF	mg/Nm³	0,1	-	0,1	0,1	-	0,1	-	0,1	-	-	0,1	0,1	-	0,1	0,2
•	SO ₂	mg/Nm³	2,5	-	2,5	11,0	-	2,5	-	15,7	-	-	2,5	2,8	-	0,5	1,0
	Cd+TI	mg/Nm³	2,5E-03	-	5,0E-03	5,0E-03	-	5,0E-03	-	5,0E-03	-	-	5,0E-03	5,0E-03	-	2,0E-03	2,0E-03
	Hg	mg/Nm³	1,0E-03	-	1,5E-03	1,0E-03	-	2,5E-03	-	2,5E-03	-	-	2,5E-03	2,5E-03	-	5,0E-04	5,0E-04
	Somma Metalli	mg/Nm³	3,0E-02	-	2,5E-02	2,5E-02	-	3,1E-02	-	4,0E-02	-	-	3,0E-02	2,5E-02	-	1,2E-02	1,8E-02
	PCDD+PCDF	ng/Nm³	2,5E-02	-	2,1E-02	1,9E-02	-	3,5E-02	-	1,8E-02	-	-	1,4E-02	8,2E-03	-	3,2E-03	1,5E-03
	IPA	mg/Nm³	4,5E-04	-	5,0E-05	4,0E-04	-	5,0E-04	-	5,0E-04	-	-	5,5E-04	4,3E-04	-	2,8E-04	1,1E-04
	Q	Nm³/h	24.400	-	23.900	-	29.400	-	31.962	23.915	-	27.118	-	27.895	-	14.505	9.231
	NOx	mg/Nm³	244,0	-	300,0	-	192,0	-	334,0	331,0	-	456,0	-	408,0	-	334,0	334,0
	Polveri	mg/Nm³	4,5	-	1,5	-	0,9	-	1,2	1,1	-	5,8	-	6,2	-	3,0	8,2
	СОТ	mg/Nm³	3,5	-	0,5	-	2,5	-	0,7	9,7	-	9,5	-	3,6	-	1,2	8,1
	HCI	mg/Nm³	1,4	-	4,2	-	1,3	-	0,1	1,5	-	0,1	-	1,7	-	1,2	1,2
1M	HF	mg/Nm³	0,9	-	0,1	-	0,1	-	0,1	0,1	-	0,1	-	0,1	-	0,1	0,1
IM	SO ₂	mg/Nm³	2,5	-	2,5	-	2,2	-	2,5	2,5	-	4,1	-	2,0	-	0,5	0,5
	Cd+Tl	mg/Nm³	2,5E-03	-	5,0E-03	-	1,0E-02	-	5,0E-03	5,0E-03	-	5,0E-04	-	5,0E-03	-	2,0E-03	2,0E-03
	Hg	mg/Nm³	1,0E-03	-	5,0E-04	-	5,0E-03	-	2,5E-03	2,5E-03	-	5,0E-04	-	2,5E-03	-	5,0E-04	5,0E-04
	Somma Metalli	mg/Nm³	5,5E-02	-	2,5E-02	-	5,0E-02	-	2,5E-02	3,7E-02	-	1,4E-02	ı	2,5E-02	-	1,5E-02	2,0E-02
	PCDD+PCDF	ng/Nm³	1,7E-02	-	8,6E-03	-	7,0E-02	-	4,6E-02	2,2E-02	-	5,4E-03		6,1E-03	-	8,0E-04	1,1E-03
	IPA	mg/Nm³	5,0E-04	-	5,0E-05	-	5,0E-04	-	5,0E-04	5,0E-04	-	1,8E-04	ı	2,4E-04	-	2,8E-04	6,5E-05

			Data	Data	Data	Data	Data	Data	Data	Data	Data	Data	Data	Data	Data	Data	Data
Camino	Parametro	u.m.	gen-14	mar-14	giu-14	dic-14	feb-15	lug-15	ott-15	dic-15	feb-16	mag-16	lug-16	dic-16	mar-17	mag-17	dic-17
	Q	Nm³/h	-	18.900	23.800	-	27.700	-	22.594	-	26.194	-	-	-	23.814	19.753	19.195
	NO _x	mg/Nm³	-	548,0	388,0	1	317,0	-	458,0	-	494,0	-	-	-	487,0	452,0	452,0
	Polveri	mg/Nm³	-	2,0	0,1	1	1,4	-	2,3	-	0,9	-	-	-	3,2	3,6	3,5
	СОТ	mg/Nm³	-	23,0	3,5	1	1,7	-	13,5	-	9,0	-	-	-	3,5	4,5	3,9
	HCI	mg/Nm³	-	0,1	0,1	1	0,5	-	0,1	-	0,1	-	-	-	0,1	0,9	0,9
42	HF	mg/Nm³	-	0,1	0,1	1	0,1	-	0,1	-	0,1	-	-	-	0,1	0,1	0,1
12	SO ₂	mg/Nm³	-	2,5	1,4	-	1,0	-	2,5	-	2,5	-	-	-	0,3	1,5	1,5
	Cd+TI	mg/Nm³	-	5,0E-03	5,0E-03	1	1,0E-02	-	5,0E-03	-	5,0E-03	-	-	-	5,0E-03	2,0E-03	2,0E-03
	Hg	mg/Nm³	-	2,5E-03	5,0E-04	1	5,0E-03	-	2,5E-03	-	2,5E-03	-	-	-	2,5E-03	5,0E-04	5,0E-04
	Somma Metalli	mg/Nm³	-	2,5E-02	2,5E-02	1	5,0E-02	-	2,5E-02	-	2,5E-02	-	-	-	2,5E-02	1,9E-02	1,9E-02
	PCDD+PCDF	ng/Nm³	-	9,1E-02	1,4E-03	1	8,0E-02	-	9,9E-03	-	4,5E-02	-	-	-	5,6E-02	1,1E-03	1,1E-03
	IPA	mg/Nm³	-	2,5E-04	7,5E-05	-	5,0E-04	-	5,0E-04	-	5,0E-04	-	-	-	5,0E-04	2,8E-04	6,5E-05
F	Q	Nm³/h	-	-	11.524	46.100	-	30.930	-	-	58.655	42.482	-	49.289	-	50.988	45.525
5	Polveri	mg/Nm³	-	-	1,6	0,1	-	0,3	-	-	6,5	8,3	-	1,0	-	40,0	13,3
6	Q	Nm³/h	-	-	11.000	11.500	-	11.502	-	14.539	-	15.507	-	12.704	-	8.346	12.294
	Polveri	mg/Nm³	-	-	1,3	0,8	-	2,7	-	0,5	-	4,7	-	1,4	-	6,2	6,2
7	Q	Nm³/h	-	-	12.200	ı	-	11.508	-	10.946	-	10.571	-	12.342	-	10.593	8.766
,	Polveri	mg/Nm³	-	-	23,0	1	-	9,4	-	25,7	-	22,0	-	15,3	-	40,0	2,2
15 A	Q	Nm³/h	4.583	-	4.700	5.000	-	9.172	-	9.293	-	10.279	-	5.469	-	8.475	7.304
IJA	Polveri	mg/Nm³	0,8	-	0,9	0,6	-	42,0	-	2,0	-	16,0	-	34,0	-	7,9	3,3
29	Q	Nm³/h	35.480	-	22.800	29.900	-	26.602	-	19.977	-	13.871	-	11.234	-	6.167	28.780
27	Polveri	mg/Nm³	0,3	-	1,1	0,7	-	1,0	-	1,5	-	0,3	-	0,3	-	0,5	0,3
	Polveri	mg/Nm³	0,3	-	100,0	6,0	-	3,1	-	6,1	-	10,2	-	3,2	-	6,6	4,3
FM1	Q	Nm³/h	23.000	-	26.000	4.387	-	22.018	-	8.004	-	4.417	-	10.611	-	4.194	4.194
	NOx	mg/Nm³	5,0	-	1,0	22,7	-	1,0	-	1,1	-	3,0	-	18,5	-	23,3	28,5
FM2	Q	Nm³/h	24.000	-	26.850	28.040	-	23.650	-	24.155	-	23.456	-	26.462	-	26.485	24.766
FIIA	Polveri	mg/Nm³	0,3	-	2,1	1,8	-	1,5	-	1,3	-	0,8	-	0,3	-	29,0	1,9
FM7	Q	Nm³/h	23.400	-	16.300	20.585	-	16.771	-	20.352	-	21.701	-	22.393	-	21.445	19.269
FI:17	Polveri	mg/Nm³	0,3	-	0,1	0,5	-	2,5	-	5,3	-	1,5	-	11,8	-	2,6	9,6

Commessa: C18-005793

Data: 12.10.2018

Rev. 02

eAmbiente S.r.l. - P.I. C.F. 03794570261

c/o Parco Scientifico Tecnologico VEGA, via delle Industrie 9, 30175 Marghera (VE)

Tel: 041 5093820; Fax: 041 5093886; mailto: info@eambiente.it; PEC: eambiente.srl@sicurezzapostale.it

Camino	Davamatus	etro u.m.	Data														
Camino	Parametro	u.m.	gen-14	mar-14	giu-14	dic-14	feb-15	lug-15	ott-15	dic-15	feb-16	mag-16	lug-16	dic-16	mar-17	mag-17	dic-17
45	Q	Nm³/h	-	-	ı	-	-	37.020	ı	34.254	-	62.472	ı	59.515	-	39.722	45.597
45	Polveri	mg/Nm³	-	-	ı	-	-	1,8	ı	1,6	-	0,3	ı	0,3	-	0,3	0,3
53A	Q	Nm³/h	33.000	-	32.300	34.300	-	28.670	-	32.223	-	27.508	-	32.329	-	22.225	34.695
33A	Polveri	mg/Nm³	0,3	-	0,1	1,1	-	0,1	-	0,9	-	4,8	-	3,7	-	0,3	0,3
53B	Q	Nm³/h	32.000	-	32.400	33.250	-	26.407	-	32.337	-	27.417	-	29.607	-	25.965	35.452
336	Polveri	mg/Nm³	0,3	-	0,1	0,8	-	0,1	-	0,3	-	0,5	-	2,3	-	0,8	0,3
55	Q	Nm³/h	-	-	-	-	-	-	-	-	-	-	-	-	-	-	27.507,0
33	Polveri	mg/Nm³	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0,8

Tabella 1-5. Statistiche relative agli impianti della ditta Fornaci Calce Grigolin

C	D					Deviazione	Incertezza	Percentili notevoli					
Camino	Parametro Parametro	u.m.	min	media	max	standard (s)	(u _{A)}	5°	25°	50°	75°	95°	
	Q	Nm³/h	42.305,00	49.900,11	60.696,00	5.635,99	1.878,66	44.121,40	46.895,00	47.100,00	52.050,00	58.932,00	
	NO _x	mg/Nm³	206,00	284,44	402,00	64,24	21,41	212,00	224,00	287,00	318,00	376,40	
	Polveri	mg/Nm³	0,10	1,45	3,10	1,04	0,35	0,10	1,00	1,24	2,30	2,90	
	СОТ	mg/Nm³	0,60	1,64	3,90	1,16	0,39	0,68	0,80	1,10	2,60	3,46	
	HCI	mg/Nm³	1,00E-01	6,56E-01	1,40E+00	5,22E-01	1,74E-01	1,00E-01	2,00E-01	4,00E-01	1,10E+00	1,36E+00	
	HF	mg/Nm³	5,00E-02	1,00E-01	1,50E-01	2,50E-02	8,33E-03	7,00E-02	1,00E-01	1,00E-01	1,00E-01	1,30E-01	
'	SO ₂	mg/Nm³	0,50	4,56	15,70	5,18	1,73	0,70	2,50	2,50	2,80	13,82	
	Cd+TI	mg/Nm³	2,00E-03	4,06E-03	5,00E-03	1,42E-03	4,75E-04	2,00E-03	2,50E-03	5,00E-03	5,00E-03	5,00E-03	
	Hg	mg/Nm³	5,00E-04	1,61E-03	2,50E-03	8,94E-04	2,98E-04	5,00E-04	1,00E-03	1,50E-03	2,50E-03	2,50E-03	
	Sb+As+Pb+Cr+Co+Cu+Mn+Ni+V+Sn	mg/Nm³	1,15E-02	2,61E-02	3,95E-02	8,10E-03	2,70E-03	1,39E-02	2,50E-02	2,50E-02	3,00E-02	3,61E-02	
	PCDD+PCDF	ng/Nm³	1,45E-03	1,59E-02	3,49E-02	1,07E-02	3,55E-03	2,13E-03	8,22E-03	1,75E-02	2,09E-02	3,08E-02	
	IPA	mg/Nm³	5,00E-05	3,63E-04	5,50E-04	1,79E-04	5,96E-05	7,40E-05	2,75E-04	4,30E-04	5,00E-04	5,30E-04	
	Q	Nm³/h	9.231,00	23.591,78	31.962,00	7.283,56	2.427,85	11.340,60	23.900,00	24.400,00	27.895,00	30.937,20	
1M	NO _x	mg/Nm³	192,00	325,89	456,00	78,42	26,14	212,80	300,00	334,00	334,00	436,80	
	Polveri	mg/Nm³	0,90	3,60	8,20	2,68	0,89	0,98	1,20	3,00	5,80	7,40	

8

Camino	Parametro	u.m.	min	media	max	Deviazione standard (s)	Incertezza (ua)	Percentili notevoli				
								5°	25°	50°	75°	95°
	СОТ	mg/Nm³	0,50	4,37	9,70	3,75	1,25	0,56	1,20	3,50	8,14	9,62
	HCI	mg/Nm³	1,00E-01	1,41E+00	4,20E+00	1,19E+00	3,98E-01	1,00E-01	1,20E+00	1,30E+00	1,50E+00	3,20E+00
	HF	mg/Nm³	5,00E-02	1,83E-01	9,00E-01	2,69E-01	8,98E-02	7,00E-02	1,00E-01	1,00E-01	1,00E-01	5,80E-01
	SO ₂	mg/Nm³	0,50	2,14	4,10	1,10	0,37	0,50	2,00	2,50	2,50	3,46
	Cd+Tl	mg/Nm³	5,00E-04	4,11E-03	1,00E-02	2,79E-03	9,31E-04	1,10E-03	2,00E-03	5,00E-03	5,00E-03	8,00E-03
	Hg	mg/Nm³	5,00E-04	1,72E-03	5,00E-03	1,54E-03	5,14E-04	5,00E-04	5,00E-04	1,00E-03	2,50E-03	4,00E-03
	Sb+As+Pb+Cr+Co+Cu+Mn+Ni+V+Sn	mg/Nm³	1,35E-02	2,94E-02	5,50E-02	1,48E-02	4,94E-03	1,41E-02	1,95E-02	2,50E-02	3,70E-02	5,30E-02
	PCDD+PCDF	ng/Nm³	8,00E-04	1,96E-02	7,00E-02	2,36E-02	7,87E-03	9,00E-04	5,44E-03	8,59E-03	2,19E-02	6,04E-02
	IPA	mg/Nm³	5,00E-05	3,12E-04	5,00E-04	1,92E-04	6,42E-05	5,60E-05	1,75E-04	2,75E-04	5,00E-04	5,00E-04
	Q	Nm³/h	18.900,00	22.743,75	27.700,00	3.274,68	1.157,77	19.003,25	19.613,50	23.197,00	24.409,00	27.172,90
	NO _x	mg/Nm³	317,00	449,50	548,00	70,22	24,83	341,85	436,00	455,00	488,75	529,10
	Polveri	mg/Nm³	0,10	2,13	3,60	1,28	0,45	0,38	1,28	2,16	3,28	3,57
	СОТ	mg/Nm³	1,70	7,83	23,00	7,22	2,55	2,33	3,50	4,20	10,13	19,68
	HCI	mg/Nm³	1,00E-01	3,50E-01	9,00E-01	3,66E-01	1,30E-01	1,00E-01	1,00E-01	1,00E-01	6,00E-01	9,00E-01
12	HF	mg/Nm³	5,00E-02	9,38E-02	1,00E-01	1,77E-02	6,25E-03	6,75E-02	1,00E-01	1,00E-01	1,00E-01	1,00E-01
12	SO ₂	mg/Nm³	0,25	1,64	2,50	0,82	0,29	0,51	1,30	1,50	2,50	2,50
	Cd+Tl	mg/Nm³	2,00E-03	4,88E-03	1,00E-02	2,47E-03	8,75E-04	2,00E-03	4,25E-03	5,00E-03	5,00E-03	8,25E-03
	Hg	mg/Nm³	5,00E-04	2,06E-03	5,00E-03	1,55E-03	5,46E-04	5,00E-04	5,00E-04	2,50E-03	2,50E-03	4,13E-03
	Sb+As+Pb+Cr+Co+Cu+Mn+Ni+V+Sn	mg/Nm³	1,90E-02	2,66E-02	5,00E-02	9,83E-03	3,47E-03	1,90E-02	2,35E-02	2,50E-02	2,50E-02	4,13E-02
	PCDD+PCDF	ng/Nm³	1,05E-03	3,57E-02	9,12E-02	3,74E-02	1,32E-02	1,05E-03	1,29E-03	2,76E-02	6,17E-02	8,73E-02
	IPA	mg/Nm³	6,50E-05	3,33E-04	5,00E-04	1,93E-04	6,82E-05	6,85E-05	2,06E-04	3,88E-04	5,00E-04	5,00E-04
5	Q	Nm³/h	11.524,00	40.243,67	58.655,00	14.570,65	4.856,88	17.594,40	30.930,00	45.525,00	49.289,00	55.588,20
	Polveri	mg/Nm³	0,10	8,89	40,00	12,55	4,18	0,18	1,00	6,50	8,90	29,32
6	Q	Nm³/h	8.346,00	12.243,56	15.507,00	2.070,13	690,04	9.407,60	11.500,00	12.294,00	12.800,00	15.119,80
	Polveri	mg/Nm³	0,50	2,70	6,20	2,38	0,79	0,50	0,80	1,40	4,70	6,20
7	Q	Nm³/h	8.000,00	10.791,78	12.342,00	1.536,72	512,24	8.306,40	10.571,00	10.946,00	12.200,00	12.285,20
	Polveri	mg/Nm ⁴	0,10	18,19	40,00	12,74	4,25	0,94	9,40	22,00	25,70	34,40
15A	Q	Nm³/h	4.583,00	7.141,67	10.279,00	2.244,17	748,06	4.629,80	5.000,00	7.304,00	9.172,00	9.884,60
	Polveri	mg/Nm³	0,60	11,94	42,00	15,70	5,23	0,68	0,90	3,30	16,00	38,80

Camino	Parametro	u.m.	min	media	max	Deviazione standard (s)	Incertezza (u _{A)}	Percentili notevoli				
								5°	25°	50°	75°	95°
29	Q	Nm³/h	6.167,00	21.645,67	35.480,00	9.666,57	3.222,19	8.193,80	13.871,00	22.800,00	28.780,00	33.248,00
	Polveri	mg/Nm³	0,25	0,64	1,50	0,46	0,15	0,25	0,25	0,50	1,00	1,34
FM1	Polveri	mg/Nm³	0,25	15,53	100,00	31,80	10,60	1,39	3,20	6,00	6,60	64,08
	Q	Nm³/h	4.194,00	11.869,44	26.000,00	9.168,09	3.056,03	4.194,00	4.387,00	8.004,00	22.018,00	24.800,00
	NOx	mg/Nm³	1,00	11,57	28,50	11,43	3,81	1,00	1,10	5,00	22,70	26,42
FM2	Q	Nm³/h	0,00	22.786,40	28.040,00	8.158,03	2.579,80	10.555,20	23.737,50	24.460,50	26.479,25	27.504,50
	Polveri	mg/Nm ⁴	0,25	4,32	29,00	9,28	3,09	0,25	0,80	1,50	1,90	18,24
FM7	Q	Nm³/h	0,00	18.221,60	23.400,00	6.796,71	2.149,31	7.335,00	17.395,50	20.468,50	21.637,00	22.946,85
	Polveri	mg/Nm³	0,10	3,79	11,80	4,26	1,42	0,16	0,50	2,50	5,30	10,92
45	Q	Nm³/h	34.254,00	46.430,00	62.472,00	11.925,24	4.868,46	34.945,50	37.695,50	42.659,50	56.035,50	61.732,75
	Polveri	mg/Nm³	0,25	0,73	1,80	0,75	0,31	0,25	0,25	0,25	1,26	1,75
53A	Q	Nm³/h	0,00	27.725,00	34.695,00	10.444,89	3.302,97	10.001,25	27.798,50	32.261,50	32.832,25	34.517,25
	Polveri	mg/Nm³	0,10	1,27	4,80	1,75	0,58	0,10	0,25	0,25	1,10	4,36
53B	Q	Nm³/h	0,00	27.483,50	35.452,00	10.155,45	3.211,43	11.684,25	26.659,50	30.803,50	32.384,25	34.461,10
	Polveri	mg/Nm³	0,10	0,59	2,30	0,69	0,23	0,10	0,25	0,25	0,80	1,70
55	Q	Nm³/h	27.507,00	27.507,00	27.507,00	-	-	27.507,00	27.507,00	27.507,00	27.507,00	27.507,00
	Polveri	mg/Nm³	0,80	0,80	0,80	-	-	0,80	0,80	0,80	0,80	0,80

1.4 PUNTO 23

"Integrazione del calcolo e della discussione modellistica delle stime di dispersione per l'inquinante "diossine e furani" (PCDD/F I-TEQ) nello scenario di valutazione a breve termine (max e 95° percentile delle medie orarie); inoltre, per PCDD/F dovrà essere specificato se i ratei di emissione e quindi le concentrazioni ambientali stimate da modello sono riferite allo schema ponderale I-TEQ e/o WHO-TEQ".

L'integrazione richiesta è riportata nello Studio di ricaduta rev. 03 del 12.10.2018; secondo le informazioni ottenute dai rapporti di prova, le concentrazioni dei composti PCDD/F sono riferite allo schema ponderale I-TEQ.

1.5 PUNTO 24

"Indicazione e giustificazione dell'eventuale utilizzo dell'opzione di calcolo "building downwash" per valutare l'effetto indotto da edifici e strutture circostanti di altezza comparabile rispetto a quelle dei camini di emissione".

L'opzione di calcolo definita come "building downwash" non è stata applicata in quanto, nell'area immediatamente adiacente al complesso industriale, non sono presenti edifici o strutture circostanti di altezza comparabile a quella dei camini di emissione.

1.6 PUNTO 25

"Indicazione e giustificazione dell'eventuale impiego delle opzioni di calcolo "deposizione secca e/o umida" che hanno l'effetto complessivo di un "impoverimento" del pennacchio (in termini cautelativi si suggerisce sempre di evitare l'utilizzo delle opzioni di deposizione se queste non sono esplicitamente richieste per una valutazione".

Non sono state applicate le opzioni di calcolo "deposizione secca e/o umida", in quanto è stato adottato un approccio cautelativo, al fine di ottenere le ricadute massime come risultato in uscita dal modello CALPUFF; infatti, l'adozione delle opzioni di calcolo per la deposizione riducono l'entità delle ricadute al suolo.

1.7 PUNTO 26

"Sostanziale revisione e controllo di congruità del rendering delle mappe di ricaduta degli inquinanti atmosferici stimati con la catena modellistica CALMET/CALPUFF; allo stato attuale le mappe tematiche forniscono evidenza di uno spostamento (shift) in direzione ovest del 'pennacchio' (plume) di ricaduta degli inquinanti che, rispetto al perimetro del sedime industriale, appare poco realistico e comunque in contraddizione con quanto riportato nel testo della relazione tecnica; si richiede di verificare la correttezza della rappresentazione cartografica e/o del testo della relazione o, in alternativa, la presentazione di convincenti elementi tecnici giustificativi del corretto posizionamento del plume che, secondo quanto riportato in mappa cartografica, sembra coinvolgere anche parte del centro abitato di Susegana (si precisa che la presente osservazione è incentrata principalmente sul corretto posizionamento del plume rispetto al territorio e non rispetto all'entità dell'impatto)".

eAmbiente S.r.l. - P.I. C.F. 03794570261

Il modello MMS Calpuff prevede come impostazione di calcolo dei parametri di turbolenza il metodo delle classi di stabilità di Pasquill-Gifford, approccio adottato nelle precedenti versioni dello studio di ricaduta. Per questa revisione è stata invece utilizzata la versione base del codice CALPUFF ed è stata scelta la metodologia basata sul calcolo di parametri di micro-meteorologia quali la lunghezza di Monin-Obukhov, l'altezza di mescolamento, la velocità d'attrito e il flusso turbolento di calore sensibile. Sono state perciò elaborate nuove mappe di distribuzione degli inquinanti, riportate come annessi allo studio di ricaduta rev.03 del 12.10.2018, dalle quali si può constatare che le curve di iso-concentrazione siano più coerenti al regime anemometrico descritto dalla rosa dei venti (cfr. paragrafo 5.1.1 studio di ricaduta rev.03 del 12.10.2018), con il plume orientato verso il territorio situato a sud-ovest dallo stabilimento Fornaci Calce Grigolin. Ne risulta infine che l'area di ricaduta occupi quasi completamente l'area occupata dal complesso industriale. Di seguito è riportato un estratto delle mappe di ricaduta, in scala 1:20.000, relativamente al PM10, nel quale è definito il posizionamento dei recettori e dello stabilimento industriale.

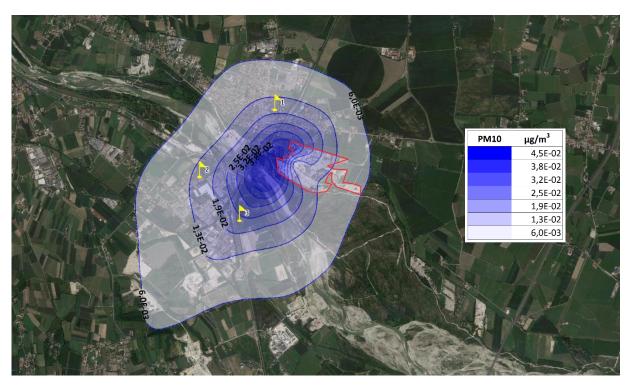


Figura 1-1. Estratto delle mappe di ricaduta relativo al PM10.

1.8 PUNTO 27

"In conseguenza dell'apparente incertezza di posizionamento del plume si richiede di definire opportuni criteri di scelta ed individuazione di possibili recettori sensibili presso i quali procedere ad una stima puntuale degli output modellistici. Considerata l'entità complessiva della documentazione progettuale e delle richieste di integrazioni si raccomanda che tutte le revisioni siano presentate in forma 'consolidata' all'interno di documenti 'autoconsistenti' che non richiedono la necessità di consultare e verificare separatamente la congruità e la completezza di versioni parziali già emesse ed acquisite agli atti con tempistiche differenti'.

In base alle curve di iso-concentrazione rappresentate nelle nuove mappe di dispersione degli inquinanti, sono stati ridefiniti i recettori sensibili, in maniera tale che siano interessati dalle ricadute al suolo degli impianti considerati nell'elaborato, per i quali se ne riporta di seguito la localizzazione in forma grafica e tabellare.

Figura 1-2. Localizzazione dei recettori sensibili

Tabella 1-6. Caratteristiche e coordinate dei recettori sensibili

N.	Recettore	Longitudine	Latitudine	
	Recettore	m	m	
1	Plesso Scolastico di Susegana	286879	5077944	
2	Quartiere residenziale	285884	5077058	
3	Casolare di campagna	286411	5076482	